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Abstract

The feasibility of reducing the interior noise levels of an aircraft passenger cabin
through an optimization of the composite lay up of the fuselage is investigated.
MSC/NASTRAN, a commercially available finite element code, is used to perform the
dynamic analysis and subsequent optimization of the fuselage. The numerical calcu-
lation of sensitivity of acoustic pressure to lamination angle is verified using a simple
thin, cylindrical shell with point force excitations as noise sources. The thin shell is
used because it represents a geometry similar to the fuselage and analytic solutions are
available for the cylindrical thin shell equations of motion. Optimization of lamination
angle for the reduction of interior noise is performed using a finite element model of
an actual aircraft fuselage. The aircraft modeled for this study is the Beech Starship.
Point forces simulate the structure borne noise produced by the engines and are applied
to the fuselage at the wing mounting locations. These forces are the noise source for the
optimization problem. The acoustic pressure response is reduced at a number of points in
the fuselage and over a number of frequencies. The objective function, to be minimized,
is the maximum sound pressure level at all response points in the passenger cabin and

for all excitation frequencies in the range of interest.

Results from the study of the fuselage model indicate that a reduction in interior
noise levels is possible over a finite frequency range through an optimal configuration of
the lamination angles in the fuselage. Sound pressure level reductions of roughly 4 dB
were attained at multiple locations in the passenger cabin. For frequencies outside the
optimization range, the acoustic pressure response may increase after optimization. The
effects of changing lamination angle on the overall structural integrity of the airframe

are not considered in this study.



N/



List of Symbols

Aij,Bij,Ds;

HEmaw

Pref

r, g, x

Stretching, bending-stretching coupling, and bending
submatricies

Structural damping matrix

Fluid-structure coupling matrix

Young’s modulus

Amplitude of applied forces, modal formulation
Magnitude of applied forces

In-plane shear modulus

Fluid and structural stiffness matrices

Fluid and structural mass matrices

Amplitude of acoustic pressure, modal solution
Local reduced stiffness matrix

Global reduced stiffness matrix

Amplitude of axial structural displacements, modal solution

Amplitude of circumferential structural displacements,
modal solution

Amplitude of radial structural displacements, modal solution
Radius of the cylindrical shell

Acoustic speed of sound in air

Thickness of shell

V-1

Shell parameter %;

Length of the cylindrical shell

Axial modal coordinate

Circumferential modal coordinate

Acoustic pressure

Acoustic reference pressure, 2.91 x 1072 psi
Cylindrical coordinate system
Non-dimensional shell axial coordinate 7

Time

iii



u v, w
X ¥ Z
1,2, 3

Subscripts
m, n

i, j

Axial, circumferential and radial structural displacements
Cartesian coordinate system

Material coordinate system

Uncoupled fluid and structure eigenvectors
Structural damping coefficient

Dirac delta function

Structural modal damping coefficient
Non-dimensional modal parameter =
Poisson’s ratio

Fluid and structure modal amplitudes
Density of the fluid, structure

Lamination angle

Frequency

Axial and circumferential mode number
Matrix indicies

iv



Contents

Abstract . . . ..

List of Symbols
Chapter 1
Chapter 2
Section 1
Section 2
Section 3
Chapter 3

Section 1

Section 2

Chapter 4
Section 1
Section 2
Section 3

Chapter 5

Chapter 6

Bibliography . .

Appendix A

Appendix B

Introduction . .. ....... . ... .. o 1
Theory and Methodology . . . ... ............... 5
Finite Element Solution Methods . . . . .. .......... 5
Design Sensitivity and Optimization . . ............ 8
Optimization Problem for the Present Work . .. ... ... 11
The Thin, Cylindrical Shell . . . .. ............... 12

The Specially Orthotropic Thin, Cylindrical Shell:

Displacements and Pressures. . . ... ............ 13

Analytical and Numerical Pressure Sensitivities to

Composite Lamination Angle . ............... . .16
TheBeech Starship . . .. .................... 21
The Finite Element Model of the Starship . .. ....... 22

Formulation of the Optimization Problem for the Starship . 24

Dynamic Analysis and Optimization of the Starship ... .25
Conclusions . ... ....... ... 32
Acknowledgments . . ... .......... .. .. . L. 35
...................................... 36

Equations of Motion for a Thin, Specially Orthotropic
Cylindrical Shell . . . .. ...... ... ... .. ... ... 40

Figures . . . . ... .. . e 46



Appendix C

Appendix D
Section 1
Section 2

Section 3

Sound Pressure Level at All Response Points for the

Optimization Problem . ..................... 62
ComputerCodes . . .. ......... .. ... 69
FORTRAN Program compfreq.f. . .. ... .......... 69
Mathematica™ program sensitivitym .. .......... 76

MSC/NASTRAN Bulk Data File . . .. ............. 80

vi



Chapter 1 Introduction

Since their design and development in the early 1960’s, composite materials have
played an increasingly important role in the design and construction of many different
vehicles and structures [1]. As defined in Jones [2], a composite material consists of “two
or more materials . . . combined on a macroscopic scale to form a useful material.” The

- material properties of composite materials are such that they generally have very favorable
strength-to-weight and stiffness-to-weight ratios [2]. In many cases, the use of composite
materials has substantially improved the performance of the structure over what could
be attained using conventional materials. Not surprisingly, composite materials have
found wide application in the construction of aircraft and spacecraft, vehicles for which

performance is very sensitive to changes in weight.

Although the use of composite materials offers several advantages over conventional
materials, several disadvantages are also apparent. From a design standpoint, one must
be careful to account for the anisotropic characteristics typically displayed in composite
materials. While a composite structure might have great strength in one direction, it
may be structurally weak in another. Often times, it is possible to take advantage of
anisotropic behavior and tailor a structure to meet a specific design requirement.

With the increasing use of composite materials in the construction of aircraft, interest
has been expressed in reducing the interior sound pressure levels of passenger aircraft
built from these materials. Work by Koval for a thin composite cylindrical shell [3]
indicated that, from the perspective of noise reduction, use of composite materials in
an aircraft fuselage may enable an aircraft designer to modify the transmission loss
characteristics of the fuselage to meet a specific noise requirement. In a noise reduction

example for a composite shell from this work, the author discussed the possibility of



using the lamination angles to attenuate noise transmission through the structure over a
specific frequency range. However, less satisfactory acoustic characteristics for the shell
may result in other frequency ranges and would have to be addressed using conventional

sound proofing measures.

Aircraft fuselages have been modeled as thin, cylindrical shells as a means of
understanding the coupling of the structural vibration modes to the acoustic modes in
the fuselage interior [4]. The thin, cylindrical shell has been used because an analytic
solution describing its motion can be derived. The same is not true for most aircraft

structures.

Salagame et al. [5] developed analytical expressions for the sensitivity of the acoustic
power emitted by a vibrating flat plate to a change in one of the design variables of the
plate. These analytical sensitivities were compared to a numerical optimization to reduce
the acoustic power radiated by a clamped, isotropic plate through an optimal thickness
distribution through the plate. This work demonstrated the feasibility of using acoustic

sensitivities to structural attributes in a noise reduction optimization.

Lamancusa [6] discusses many different objective function formulations for the
reduction of radiated noise from a clamped, isotropic plate in which thickness is allowed
to vary. In this work, the author develops objective functions based on various acoustic
measures such as radiated sound power, mean-square velocity, and modal radiation
efficiency. The importance of proper objective function, design constraints, and design
variables is discussed in this work. A poorly specified optimization pl_roblem can make
it difficult to attain convergence to a global optimum with an optimization algorithm. In
a slightly different approach, Naghshineh et al. [7] first specified a minimum radiation
condition for a beam radiating in a rigid baffle. Then, an optimal distribution of Young’s

modulus and density for the beam was found to force the beam to vibrate in the minimum



radiation mode.

Recent research has been undertaken to structurally optimize the thickness distribution
of an isotropic cylindrical shell for the purpose of minimizing the interior noise levels [8,
9]. Noise levels for a single excitation frequency were successfully reduced through the
generation of an optimum thickness distribution around and along the cylindrical shell.
In this work, the authors noted a strong dependance of the final optimum solution on the

starting values of the design variables of the problem.

For cylindrical shells made from laminated composite materials, considerable work
has been done in the study of the optimization of lamination angle to maximize the
buckling strength. The work of Rao [10] and the work of Hu [11] each demonstrated the
ability to increase the buckling pressure of a thin, cylindrical shell through an optimization
of angle for a variety of boundary conditions. Many composite cylinder buckling studies,

including those of Hu, have been undertaken through the use of the finite element method.

MSC/NASTRAN! a commercially available computer code, has been used as a
tool for the prediction of aircraft interior noise in a number of earlier studies [13, 14].
However, these studies have used the so-called structural-acoustic analogy [15] as a
means of calculating the acoustic pressure response of the fluid. Recent upgrades to the
MSC/NASTRAN computer code allow the user to model the fluid and compute acoustic
responses directly. Work by Fernholz et al. [16] demonstrated the feasibility of using
a fully-coupled fluid/structure analysis for a cylindrical model. More importantly to
the current work, this feature makes it feasible to optimize the model using acoustic
responses as design variables or objectives.

The objective of the present study is to demonstrate the feasibility of sound pressure

level reduction through an optimal lamination angle configuration in a composite aircraft

1 NASTRAN is an acronym standing for NASa STRuctural ANalysis [12].



fuselage. To achieve this reduction, the lamination angles in the fuselage are optimized
over a range of excitation frequenéies. Unlike previous studies, the geometry of an actual
aircraft, rather than a cylindrical shell, is used in the optimization analysis. The aircraft
used is the Beech Starship, an eight- to ten-person twin turboprop aircraft. The Starship
is modeled and analyzed using the finite element method. Loads simulating the structure-
borne noise produced by the engines are applied to the model. MSC/NASTRAN is used
to perform the finite element analysis and subsequent lamination angle optimization. The
effects of changing lamination angle on the overall structural integrity of the airframe

are not considered in this study.

This study is divided into five chapters. The methodology and theory of the finite
element solution method and ply-angle optimization is outlined in Chapter 2. In Chapter
3, this methodology is applied to a thin, orthotropic cylindrical shell. Analytical solutions
for the motion of the cylinder are given. The numerical solutions and design sensitivities
are compared with analytical solutions from classical thin shell theory. In Chapter 4, the
methodology developed in Chapter 2 is applied to the Beech Starship fuselage. Because
an analytical solution for the motion of the fuselage is not available, only a numerical
analysis is performed. Finally, Chapter 5 contains a discussion of the results of this
work. Appendices include a derivation of a solution to the Donnell-Mushtari equations
of motion for a thin cylindrical shell composed of specially orthotropic materials, figures
related to the current work, and complete output data for all the response locations used

in this study.



Chapter 2 Theory and Methodology

Because of the complexity of the aircraft fuselage and interior fluid system, much of
this work was necessarily dependent upon numerical methods of analysis. In particular, a
fully-coupled finite element method was used to model both the aircraft structure and the
air inside the passenger cabin. MSC/NASTRAN, the computer code used to perform the
finite element analysis, was also used to optimize the lamination angles of the fuselage

composite material for the reduction of the aircraft interior noise levels.

In this chapter, methods of solving a finite element problem for a system containing
both fluid and structural components are outlined. As the finite element modeling method
is quite common and well understood, only the solution methods are provided here. For
more detail regarding finite element theory, the reader is referred to the literature [12,
17, 18].

Less common in standard engineering practice, but more critical to this particular
work, is design sensitivity and optimization. Therefore, more of this chapter is devoted
to understanding these methods than to finite element analysis. In particular, close
attention is given to the specification of the objective function and constraints within

MSC/NASTRAN.
2.1: Finite Element Solution Methods
The equation of motion for a structure for the eigenvalue problem is written as [18]
[M;){i} + [Ks{u} =0 1

where [K;] represents the stiffness matrix of the structure, [M;] the mass matrix, and {u}

the displacement vector for the structural element nodes. Assuming a harmonic solution
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for {u}, Equation (1) becomes
([Ks] - /\[Ms]){q)s} =0 (2)

where {®s} represents the structural eigenvectors of the system. The eigenvalues A of

the problem are related to the natural frequencies through
A=w? (3)

where w, represents the natural frequencies of vibration in rad/sec [19]. For this work,
the Lanczos method was used to calculate the eigenvalues of the system because it usually
represents the best solution method for problems having a large number of degrees of

freedom [19].

For a frequency response analysis, the equation of motion of the structure is written

as [18]
[Ms){ii} + [BsJ{u} + [K;[{u} = e“*[F(w)] 4)

where the F(w) represents a harmonic excitation to the structure and [B;] represents
the damping matrix for the structure. If a steady-state harmonic solution is assumed,

Equation (4) becomes
(~w?[M] + iw[Bs] + [K;]) {u(w)} = [F(w)] )

Here, w represents the excitation frequency of the system.

Fluids are modeled using three-dimensional elements having one degree of freedom
at each node, that degree of freedom being the acoustic pressure. The equation of motion

for the frequency response analysis of the fluid is [20]

[M¢] {5} + (K] {p} + ps[C){i} = [0] (6)



where [M] is the acoustic “mass” matrix and [K7] the acoustic “stiffness” matrix. The
[C] matrix couples the motion of the structure to the acoustic pressure in the fluid. At

the fluid-structure interface, the boundary condition for the fluid is

Op 0%u,

o~ o @)

where n is the unit outward normal vector to the surface of the structure, pr is the density
of the fluid, and u, is the displacement of the structure in the normal direction. This
boundary condition is reflected in the third term of Equation (6). The fluid in turn affects

the motion of the structure by applying forces over the structural surface area of [21]
{F}y=—[cT]{s} ®)

The coupled equations of motion for the fluid and structure are thus [21]

e w1+ G110 G -={0) @

Two methods of solution can be used to solve the frequency response problem

The direct method essentially solves Equation (9) as shown for discrete excitation
frequencies [19]. This method, while generally accurate for a wide variety of structural
configurations, can be computationally expensive, particularly for a large number of

excitation frequencies.

The second method that can be used to solve the frequency response problem is the
modal method. In this method, the physical variables of the problem (p, u) are assumed
to be a linear combination of the uncoupled acoustic and structural modes

[u] =~ [5][€s(w)]e™*

[p] ~ [®] [£5(w)] ™

where @; are the uncoupled eigenvectors of the structure, @, the uncoupled eigenvectors

(10)

of the fluid, and {; and &f are the modal amplitudes for the structure and fluid respectively.
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Note that Equation (10) becomes an equality if all the modes of the system are used [19].
However, this is typically not done. Substituting this relation into Equation (9) and
pre-multiplying by the transposed transformation matrix yields [20]
T M,®, 0 ] {{s } N [@ZBSQS 0] {{s } N
pr®TA®, ®TMd; | |45 0 0] ¢ an
oTK,®, —0TAT®,] (¢ _ [OTF(w)
0 oTKs®y | &) 0

This system of equations is solved in using the direct frequency approach described
above. The number of modes used in this solution is usually much less than the number
of physical variables in the system and the use of this method can represent a substantial
computational savings over the direct method [19]. However, a modal truncation error is
also associated with this method. Care must be taken to ensure that a sufficient number

of modes are used to reduce the truncation error to an acceptable level.
2.2: Design Sensitivity and Optimization

In general, design sensitivity is the change of a structural or system response with
respect to changes in a design variable. Design optimization is the process of generating
improved designs subject to certain constraints and criteria [22]. Sensitivity analysis and
design optimization are closely related, particularly in computer implementations, as the
responses computed in the sensitivity analysis can be used in the optimization algorithm

to determine the search direction for the objective function.
The ij-th design sensitivity coefficient A is defined as

o= On

i = gz (12)
where 7; is the j-th response and x; is the i-th design variable. The sensitivity coefficient
is calculated for the Z, vector of design variables [22].

The following components are included in the basic statement of a design optimization

problem [23]:



Objective Function
Minimize F'(£) subject to
Inequality Constraints

gi(£) £0 j7=1,2,...,n4

Equality Constraints

Side Constraints

xﬁ <z; <z¥ 1=12,...,n where
Design Variables

Z = {x1,22,-..,Zn}

Here, the objective function represents the attribute of the system which the user is
trying to minimize. The design variables are the components of the model which the
user can change in order to minimize the value of the objective function. The equality
and inequality constraints limit the values that the objective function can assume. That
is, they limit the range over which the user can search for an optimum value for the

objective function. Likewise, the side constraints limit the values of the design variables

for the problem.

In a design optimization problem, the MSC/NASTRAN optimizer uses the design
sensitivity and objective function gradients to locate a global objective function minimum.
When no constraints are active or violated, the Method of Steepest Descent is used [22].
- However, this method is not particularly robust and there is often difficulty in converging
to an optimum value when using the Method of Steepest Descent. Thus, on subsequent
iterations, or for design cycles in which constraints are active or violated, the Modified

Method of Feasible Directions is used. With this method, one of the conmstraints is



followed until a global optimum for the objective function is found. During the process
of finding this value, some of the constraints for the problem can be slightly violated [22].
For more information regarding these methods, the reader is referred to the literature [22,

23, 24].

The MSC/NASTRAN design cycle flow is as shown in Figure B1. At the start of each
cycle, a full finite element analysis of the model is performed. The finite element data is
then used to develop an approximate representation of the model. The approximate model
is constructed using first-order Taylor Series expansions for the responses in the system
[22]. This approximate model is used for the calculation of the design sensitivities and
constraints for the current design cycle. Furthermore, the approximate model contains
a reduced number of constraints which in turn improves the efficiency of the optimizer
calculation [22]. Next, a check for hard convergence is performed and, if satisfied, the
optimization algorithm exits. If the conditions for hard convergence are not satisfied,
the optimizer performs an optimization using the data in the approximate model. After
completion of optimization, the optimizer checks for soft convergence. If the criteria for
soft convergence are satisfied, the optimizer exits. If not, the model is updated based on
the results of the optimization and a finite element analysis of the model is performed

to begin the next design cycle [24].

Convergence with the MSC/NASTRAN optimizer can be attained in a number of
ways. First, hard convergence can be attained if the Kuhn-Tucker conditions are satisfied.
Satisfaction of these conditions indicates that a local optimum value for the objective
function has been reached. Hard convergence can also be attained if the maximum
number of design cycles for the optimizer is reached, or if no feasible solution for the
optimization problem exists. Soft convergence is attained if the absolute or the relative

change in the value of the objective function is less than some minimum value from one
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design cycle to the next [22].
2.3: Optimization Problem for the Present Work

It was desired to reduce the noise levels inside the aircraft below an initial, baseline
pressure at a number of response locations and for a number of excitation frequencies.
To accomplish this, the objective function was chosen to represent the maximum acoustic
response for the set of response locations over a range of excitation frequencies spec-
ified for the problem. The value of the objective function was then minimized at all
response points in the cabin and for all excitation frequencies in the range of interest.

Mathematically, the optimization problem can be written

Minimize OBJ with

, 2
OBJ(¢y) = max{lOlogm (%) } where (13)
ref fw
¢= {¢13¢27-"7¢k} (14)

where the design variables for the problem, 1,2, represented the composite lamination
angles and OBJ represented the maximum sound pressure level at the j response locations

i the problem over the range of frequencies w.

The objective function was specified in this manner so that the sound pressure level
at several excitation frequencies could be reduced. Had the objective function been
formulated to reduce the acoustic pressure response directly, it would have been feasible
to do so only for a single frequency. However, by setting the objective function equal
to the maximum response in a set of locations and frequencies, the sound pressure
levels at several frequencies were included as a design response and included within

the optimization calculation (see Figure B2).

2 The lamination angles for composite material lamina are commonly denoted in the literature (e.g. Jones [2]) by the Greek letter
6. However, this work uses ¢ as the circumferential coordinate in the cylindrical coordinate system. To avoid confusion, v
was chosen to represent lamination angle.
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Chapter 3 The Thin, Cylindrical Shell

Before applying the methodology described in Chapter 2 to the Beech Starship
fuselage, this analysis was applied to a thin, cylindrical shell. The thin cylindrical
shell shares some geometric similarities with the fuselage, but, unlike the fuselage, it
is possible to write closed form solutions to the equations of motion of the cylinder.
These solutions are used to ascertain the extent of the modal truncation errors in the
numerical modal solution and as a check on the numerical design sensitivity calculations

for the optimization problem.

The Donnell-Mushtari theory is applied to a thin, open, circular cylinder having
dimensions similar to those of the Starship passenger cabin section and composed of
a single-layer, specially orthotropic material. A cylindrical coordinate system is used
to describe the model with the origin located at the center of one of the open ends of
the cylinder. The positive x-axis is located along the axis of the cylinder. The ends
of the cylinder are simply supported in the circumferential and radial directions and are
unsupported in the axial direction. Structural endcaps are not included in the model.
Boundary conditions of p=0 are applied to the fluid at the open faces at each end of
the cylinder. Two harmonic, in-phase point forces of equal magnitude are applied to the
cylinder. The forces are located 180° apart circumferentially and at one-half the length
of the cylinder axially. The radial motion of the cylinder is coupled to the motion of
the fluid inside the cylinder and an analytical relation describing the acoustic pressure
at any point in the fluid is derived. Numerical modal and direct solutions are compared
to the analytical solution.

The last analysis performed on the composite cylinder is a sensitivity analysis of the

acoustic pressure response of the fluid inside the shell with respect to ply angle for angles
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near zero degrees. To determine this sensitivity analytically, it is necessary to use the
cylindrical equations of motion for a generally orthotropic material. To include the effect
lamination angle has on bending terms in the equations of motion, it is also necessary
to use the Love-Timoshenko equations for the motion of a thin shell. A solution for
the generally orthotropic material is not developed. However, for lamination angles of
zero degrees, the generally orthotropic material becomes specially orthotropic, and the
solution developed for those materials can be used to find the sensitivity of pressure to
lamination angle. Comparison of the numerical sensitivity to the analytical sensitivity is

made, and a difference between the two solutions is manifested.

3.1: The Specially Orthotropic Thin, Cylindrical Shell:
Displacements and Pressures

As shown in Appendix A, a solution for the specially orthotropic thin cylindrical

shell equations of motion can be written

u(f, z,t) = e Z Z Umn €08 (A 8) cos (nd)

m=0 n=0
. (oo} o
v(0,2,t) = €“* > > Vi sin (Ams) sin (n6) (15)
m=1 n=0
) oo o0
w(b, z,t) = e Z Z Wonn sin (Ams) cos (nf)
m=1 n=0

where u, v, and w represent the axial, circumferential, and radial displacements of the

shell.

The acoustic pressure at any point in the fluid within the shell is given as

p(r,0,z,1) = Z Z PrnJn(amr) sin (Ays) cos (nf) (16)

m=1 n=1

In the derivation for the acoustic pressure within the shell, a partially-coupled solution
between the structure and the fluid has been assumed. The structure influences the

behavior of the fluid, but not vice versa. In MSC/NASTRAN, a fully-coupled response
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is computed. For most aircraft-type structures, the back-pressure forces on the structure
can be neglected [25]. An exploded view of the fluid-structure problem as formulated
above for the thin cylindrical shell filled with air is shown in Figure B3. Also shown

are the applied forces for this problem.

The finite element model was constructed using quadratic quadrilateral elements with
2464 nodes for the structure and quadratic pentahedral elements with 20,501 nodes for
the fluid. The structural elements had five degrees of freedom at each node (three
displacements and two rotations) and the fluid elements had one degree of freedom
(pressure) at each node. The fluid and structure nodes were matched one-to-one on the
surfaces where they were in contact. For the structural elements in the model, a structural
damping value of 1% of critical was applied while the fluid elements remained undamped.

This finite element model is shown in figure B4.

A comparison of the analytical and numerical frequency responses is shown in Figures
B35, B6, B7, and B8. Figure B5 shows the numerical modal solution calculated using
MSC/NASTRAN for the radial displacement of a point on the shell verses the excitation
frequency of the applied forces. Also shown in this figure is the analytical solution
derived in Appendix A. The numerical solution used 1000 structural vibration modes in
a range from 0.0 Hz to 499.67 Hz to compute the structural response. For comparison,
the analytic solution used 1600 modes. This range of frequencies was chosen to ensure
that a sufficient number of modes were specified for the excitation frequency range of
interest (1.0 to 150.0 Hz). In general, there is good agreement between the analytical and
numerical models for the cylinder. There are several reasons why the agreement between
the two responses is not as close at the higher frequencies of the range shown. First, the
number of elements in the model may be insufficient to capture the higher-order mode

shapes of the response. Secondly, different shell theories are used for the numerical and

14



analytical solutions and the analytical model is partiaily-coupled, while the numerical
model is fully-coupled. Also, some of the differences in the response amplitudes may be

attributable to the moderately light damping which was applied.

The comparison between the analytical and numerical solutions for sound pressure
level at a point in the fluid is shown in Figure B6. A total of 300 fluid modes over a
range of 41.52 Hz to 627.2 Hz were used in the numerical solution to represent the fluid
response. As was the case for the structural response, this range was chosen to minimize
the modal truncation error for the excitation frequency range of interest. The major
response peaks of the system are captured by both methods. However, a discrepancy
between the two solutions is apparent at approximately 105 Hz. The analytical solution
shows a response peak in this region, but there is no corresponding peak in the numerical
solution. Likewise there are substantial differences between the two solutions in the
amplitudes of the first two response peaks. These differences can again be attributed to

the reasons outlined above for the solutions for the structural displacement.

Figures B7 and B8 show a similar comparison for the same model. For these figures,
the numerical direct frequency response is plotted verses excitation frequency. The direct
response was computed for two smaller frequency ranges, one from 20 to 60 Hz and
the other from 90 to 110 Hz. This was done because a direct frequency response is
computationally more expensive than a modal solution, particularly if the model has a
large number of degrees of freedom, or if responses for a number of excitation frequencies
are desired. The first frequency range, 20 to 60 Hz, was chosen to see how well the
numerical solution would resolve the fluid response near 41 Hz. The second frequency
range, 90 to 110 Hz, was chosen to compare the analytical and numerical solutions for

the anti-resonance at approximately 100 Hz.

From Figure B7, a close agreement between the analytical and numerical finite
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" element solutions is again apparent. Both solutions capture the vibration characteristics
of the structure over the range of | excitation frequencies. There are slight differences
between the two solutions, again attributable to differences in the shell theories used for
each solution method. Figure B8 shows the acoustic response for a point in the fluid
interior to the shell. A close agreement is noted between the analytical and numerical

direct solutions.

From an analysis of these models, it can be concluded that the numerical solutions
calculated using the finite element method provides a solution very close to that predicted
by analytical models, particularly for the structural portions of the system. However, care
must be exercised when using the modal solution method. One must ensure that modal
truncation errors have been minimized, or at least reduced to an acceptable level. As a
check on the modal solution for cases where an analytical solution is not available, it

may be advisable to run a direct solution over the frequency range of interest.

3.2: Analytical and Numerical Pressure Sensitivities
to Composite Lamination Angle

The shell equations of motion for a single-layer, generally orthotropic material were
used to develop an analytical model of the sensitivity of acoustic pressure to lamination
angle. To account for the effect lamination angle has on the bending terms in the
equations of motion, the Love-Timoshenko equations were used. A general solution
for the generally orthotropic equations was not developed, but for a lamination angle of
zero degrees, the shell material becomes specially orthotropic, and the solution developed
in Appendix A for specially orthotropic materials can be used. This solution was used to

calculate the sensitivity of the acoustic pressure to a change in lamination angle at zero
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degrees. Through comparison to Equation (12), we see that we are essentially calculating

dp

A - %—l‘{b:()"

17)

If this quantity is positive, then the acoustic response inside the shell will increase as the

lamination angle is changed from zero degrees.

The Love-Timoshenko equations of motion for a single-layer generally orthotropic

thin cylindrical shell can be written [29, 26]

Ly Lz Ly |u 1 |
Ly Ly Lps||v| = i fo (18)
L3; L3 L3z | {w 2\ fr
where
Ay 0% Ag 02 Agg 0° ha® 92
Ly =24 S +2 16 4 266 Z_PG__Z
Agg Os Az 0300 ~ Agp 00 Ao Ot
Lo — A 87 Az + Age 0? + Age 02
12 = A22 682 Azz 3530 A22 302
[ A260 A0
= 4,00 " Ay 0s
Aqg 0% A Agg O? Agg 02
Loy = 16 n 12 + Asé 4 228

o A22 332 A22 6800 Azz 602
2 2 2 2 2 2 92
Agg O Ay O Deg 0 +3D26 0 49 0 B pha* 0
Ago 012

Ly = k12
22 A22 632 + 2A22 8889 + [ Dgz 832 Dzz 8830 892

Aze 8 3 D16 83 D12 +2D66 83 Dze 33 83
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and

Aij = i Qijd¢

L ENTEY

By = [ Qutde (20)

Sl O

Dij = | Qij€*de

IR

h represents the lamina thickness, s = i—, k= 1357 and Qz’j represents the ij —th reduced
stiffness in the global coordinate system. The Aj;, B, and Dj terms are commonly
denoted in the literature [26] as the stretching, bending-stretching coupling, and bending
submatrices, respectively. The B; submatrix has been included here for completeness.
For a single-layer laminate, such as the cylinder used in this chapter, the B;; submatrix
becomes zero.

The principal material axes of an orthotropic material are not, in general, aligned
with the natural body axes of a given problem (see Figure B9). The lamination angle
3 relates the reduced stiffnesses in the global coordinate system to the stiffnesses in the
material coordinate system. These relations are written [2]

Qu = Qu1cos* ¥ + 2(Q12 + 2Qg6) sin® ¢ cos® P + Qg sin® ¢

Q12 = (Qu1 + Qa2 — 4Qse6) sin® 1 cos® ¥ + Q12 (sin® ¢ + cos* 1)

Q22 = Quasin® ¥ + 2(Q12 + 2Qes) sin® ¥ cos? 1 + Q22 cos* ¢ .

Q16 = (Qu1 — Q12 — 2Qs6) sin ¢ cos® 1 + (Q12 — Q22 + 2Qe6 ) sin® 1 cos ¥ .

Qa6 = (Qu1 — Q12 — 2Q¢6) sin’ ¢ cos 1 + (Q12 — Q22 + 2Qe6) sin ¢ cos®

Qes = (Q11 + Q22 — 2Q12 — 2Qes) sin ¢ cos® ¥ + Qg (sin* ¢ + cos* )

where the bar over the Q;; indicates that the reduced stiffnesses have been transformed

to the global coordinate system. The angle ¢ represents the angle between the global
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x-axis and the local 1-axis, measured counter clockwise from the x-axis [27]. Note that

for ¢=0° and ¥=90°, the material becomes specially orthotropic.

Figure B10 shows a comparison between analytical and numerical solutions of %’Z
versus frequency for =0° in the thin, cylindrical shell. For this case, the numerical
solution is a direct frequency response. Figures B11 and B12 show the analytical radial
displacement of the shell and the acoustic pressuré response of the fluid respectively at
the same location as the sensitivity shown in Figure B10. Each of these figures shows a
response over the frequency range 20 to 50 Hz. The range of excitation frequencies was

chosen because it contained both structural and acoustic resonances.

From these figures, it is evident that the greatest sensitivity of acoustic pressure to
lamination angle is displayed in the vicinity of the resonant peaks of the system. For this
frequency range, the resonant responses occur at approximately 24.70 Hz (structural mode
1,6), 32.05 Hz (structural mode 1,4), 41.52 Hz (fluid mode 1,0,1), and 47.58 Hz (structural
mode 1,10)3. There is good agreement between the analytical and numerical sensitivities.
In particular, the peaks in the sensitivities occur at roughly the same frequencies and the
signs of the sensitivities are the same between the solutions. To simplify the analytical
solution, damping was not applied to either the numerical or the analytical solutions. The

absence of damping is likely the cause of the difference in the sensitivity amplitudes.

A difference between the analytical and numerical solutions is apparent near the
acoustic peak in the response. The numerical solution for acoustic pressure sensitivity
shows a sensitivity to lamination angle near this peak, while the analytical solution
does not. This is attributable to the different assumptions that were made for each

solution. In the analytical solution, only one structural mode couples to each acoustic

3 For structural mode shapes, the first number indicates the order of the axial component of the mode and the second number
indicates the order of the circumferential component of the mode. For fluid mode shapes, the first number corresponds to the
radial order of the mode, the second to the circumferential order, and the third number indicates the axial order of the mode.
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mode as the fluid and structural modes are assumed to be orthogonal. This assumption is
enforced even for the generally orthotropic material. The influence of the structural mode
associated with the fluid resonance near 41 Hz is very slight. Thus, the sensitivity of that
response to lamination angle will likewise be very small. In the numerical solution for
the generally orthotropic material, the fluid and structure modes are no longer orthogonal
and the modal amplitudes of a number of structural modes, rather than a single mode,
can be quite substantial for the acoustic peaks of the response. Thus, the sensitivity of
acoustic pressure to lamination angle will likewise be larger in the numerical solution.
This difference points out some of the limitations of the analytical solution used for this
analysis. In general, there is a good correlation between the analytical solutions and the
numerical solutions calculated using MSC/NASTRAN. In particular, the calculation of
sensitivity of acoustic pressure to lamination angle appears valid and can be used for the

optimization of the Starship fuselage.
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Chapter 4 The Beech Starship

The primary aim of this work is the demonstration of the feasibility of reducing the
noise levels in the interior of an actual aircraft fuselage through the optimization of the
lamination angles in the aircraft fuselage. | The Beech Starship is the aircraft used for
this study. Thé Starship fuselage and passenger cabin interior is modeled and analyzed
using the finite element method. Because this work is concerned with the acoustics of

the fuselage interior, no attempt was made to model the wings of the aircraft.

In this chapter, the optimization problem for the fuselage is formulated to reduce the
acoustic pressure at a number of response points in the cabin interior and over a range
of excitation frequencies. The objective function is minimized with the constraint that it
be greater than the acoustic pressure at the response locations. The fuselage lamination

angles are used as the optimization design variables.

Point forces are applied to the fuselage at the wing mounting locations. These forces
represent the structure-borne noise in the aircraft produced by the engines and they are
the noise source for the optimization problem.

It was desired to use the modal frequency response solution for the present work
because a substantial time savings is typically associated with the use of this method
over the use of the direct method. A preliminary modal frequency analysis is performed
on the model and, to ascertain the extent of the modal truncation error associated with
this model, a direct frequency response analysis is performed over the range of the
optimization frequencies.

The results of the optimization of lamination angle for the reduction of interior noise
are next discussed. The design cycle histories for the objective function and design

variables are charted. A modal frequency analysis using the final lamination angles
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calculated by the optimization algorithm is used to measure the decrease in interior

sound pressure level.

4.1: The Finite Element Model of the Starship

The Beech Starship is an eight- to ten-passenger twin turboprop aircraft designed
and developed in the early 1980’s by the Beech aircraft company [30]. It is a unique
aircraft in many respects. The main wing is located on the aft section of the aircraft,
with two smaller canards in front. These canards pivot automatically with the main wing
flaps to maintain pitch and trim [30]. The two engines are mounted on the main wing
in a “pusher” configuration. Lastly, much of the aircraft structure is constructed from

composite materials.

Using data provided by the Raytheon Aircraft Company, the NASA Langley Re-
search Center developed a geometric representation of the Starship. Included in this
representation were the passenger cabin windows, the cockpit windows, passenger cabin
door, and the aircraft emergency escape hatch. Because the present work concerned the
acoustics of the aircraft cabin no attempt was made to model the wings of the Starship.
An isometric view of the geometric model of the Starship is shown in Figure B13. The
Cartesian coordinate system used for the analysis of the Starship is also shown in this
figure for reference. More detail regarding this system and the location of the origin for

the problem is contained in Appendix C.

This geometric model was used for the generation of both the structural and fluid
finite element meshes. Like the geometric model, the finite element models for this study
were constructed by the NASA Langley Research Center. The structure of the fuselage
was modeled using several different element types. Most of the aircraft, including the

fuselage and windows, was modeled with quadratic quadrilateral elements. The nose
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of the aircraft was modeled with quadratic trilateral elements. Stringers and stiffeners
present in the Starship wefe modeled using beam elements. These beams were used
primarily as reinforcement around the windows and doors of the aircraft. A total of
10,620 nodes, each having five degrees of freedom, were used to model the Starship
structure. An isometric view of the structural finite element mesh is shown in Figure

B14. Figure B15 shows the location of the beam elements in the model.

The final aspect of the Starship which was modeled was the air inside the passenger
cabin. This was the only region of the aircraft where the fluid was modeled. Similar
fluid models were not created for the cockpit or baggage sections of the aircraft. The
air within the passenger section was modeled using linear tetrahedral elements and 6887
nodes. Each of the fluid nodes had one degree of freedom. Linear elements were used
in the fluid to ensure proper coupling to the structure at the fluid-structure interfaces of
the model. An isometric view of the fluid portion of the Starship model is shown in
Figure B16. In the complete model, the aircraft structural finite element mesh enclosed
the finite element mesh of the fluid. On the surfaces where the two were in contact, the
fluid nodes were each matched to a structural node. No structural details of the passenger
cabin interior were modeled. Therefore, this section of the model did not include interior

trim panels or a floor.

Most of the fuselage is constructed from a single section of sandwich composite
material. The middle layer of this composite is a 0.75”-thick honeycomb core. Four
graphite epoxy face sheets, each between 0.0085”- and 0.010”-thick are symmetrically
applied to either side of the core [31]. Properties consistent with those of aircraft glass
were assigned to the windows of the aircraft. The beams in the model were given the
material properties of aluminum. Figure B17 shows the location of the various property

sections in the model.
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It was assumed that the structure-borne noise produced by the engines would enter
the aircraft through the wing mounting points on the fuselage. Therefore, this noise
source was modeled with a total of sixteen point forces applied to the eight locations
where the wings would attach to the fuselage, as shown in Figure B18. Two wing mounts
are located on each side of the fuselage. Two more mounting points are located on each
of the bulkheads below the baggage compartment. All the forces applied to the fuselage

were steady-state, harmonic, and in-phase.

A structural damping coefficient of 3% of critical was applied to the composite
structures in the problem. This value is typical for composite materials [32]. The window
structures in the aircraft were given a damping value of 5% of critical in an attempt to
reduce the influence of those modes on the overall acoustic solution. Though structures in
the passenger cabin interior such as trim panels, seats, and passengers were not modeled
directly, it was felt that some accounting should be made for the effect of these features
on the acoustic behavior of the cabin. Therefore, the fluid elements in the model were
assigned a damping value of 3% of critical to account for the noise attenuating effects

of the aforementioned items.

4.2: Formulation of the Optimization Problem for the Starship

To reduce the acoustic pressure at a number of points inside the Starship fuselage, the
objective function was minimized with the constraint that it be larger than the maximum
sound pressure level for all the response points in the aircraft and for all excitation

frequencies within the range of optimization.

For the optimization problem, a total of ten fluid grid points were used as acoustic
pressure response locations. These points were chosen to represent the approximate

listening locations of the passengers in the cabin. The acoustic pressure at each of these
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points was used as a constraint in the optimization problem. The objective function was
minimized at 25 frequencies equally spaced over the range of 185 Hz to 210 Hz. Thus,

there were a total of 250 constraints for the optimization problem.

As was done for the cylinder sensitivity analysis in Chapter 3, the lamination angles
in the fuselage composite material were used as the design variables for the problem.
Unlike the cylinder, which consisted of a single-layer composite and therefore only had -
one Jamination angle, a total of eight lamination angle design variables were available
for the Starship fuselage. The lamination angles were optimized for the fuselage as one
large section. As discussed above, this arrangement refiected the actual construction of
the aircraft. Not included in this optimization were the windows, the passenger cabin

door, and the bulkhead at the aft end of the passenger cabin.

The objective function was minimized over a range of frequencies, rather than a single
frequency, in recognition of the fact that in a typical aircraft environment the structural
modes can “shift” in frequency due to changes in pressure and temperature. Specification
of a single optimization excitation frequency would be of limited application. Thus, to
accommodate these factors, the effect of lamination angle over a range of excitation

frequencies was considered.

4.3: Dynamic Analysis and Optimization of the Starship

To determine the modal truncation error in the frequency range of interest for the
optimization problem, a direct frequency response was run on the same model for an
excitation range of 185 to 210 Hz. The fuselage was analyzed over a wide frequency
range using the modal forced frequency response method. Damping of 1% of critical was
applied to the structure. No damping was applied to the fluid. A total of 500 structural

and 200 fluid modes were used to model the behavior of the Starship fuselage and interior
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over an excitation frequency range of 50 to 250 Hz. The 500 structural modes covered
a range of excitation frequencies from 0.0 to 650.4 Hz and the 200 fluid modes covered

a frequency range from 36.23 to 480.94 Hz.

A comparison of these analyses for two structural and two fluid locations in the model
are shown in Figures B19, B20, B21 and B22. From these figures, there is very good
agreement between the numerical direct and modal solutions over the frequency range of
interest for this study. Thus, it was felt that the modal solution method could be used for
the analysis and optimization of the fuselage. It was assumed that these results, which
were attained for a structural damping of 1% of critical, would also be valid for the 3%

damping which was applied to the fuselage for the optimization analysis.

The lamination angles in the Starship model were next optimized to reduce the
interior sound pressure levels. A total of eleven design iterations were allowed for the
optimization algorithm. Figure B23 shows the design cycle history for the objective
function for these eleven iterations. Figure B24 displays the same information for the
lamination angles in the model. Here, angles one through four represent the angles for
the face sheets on the outer surface of the fuselage, while angles five through eight are the
lamination angles for the graphite epoxy face sheets on the inner surface of the fuselage.
The actual design variable history for the objective function from the data deck is shown
below. Complete numerical data for all the design variables of the problem are shown

in Table 1.
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KA EEE KA AA I AR A A AR AR AA A A AT AR ATk Ak Ak hddk

SUMMARY OF DESIGN CYCLE HISTORY

*******:k*******************************************************

{HARD CONVERGENCE ACHIEVED)

NUMBER OF FINITE ELEMENT ANALYSES COMPLETED 12
NUMBER OF OPTIMIZATIONS W.R.T. APPROXIMATE MODELS 11

OBJECTIVE AND MAXIMUM CONSTRAINT HISTORY

OBJECTIVE FROM OBJECTIVE FROM FRACTIONAL ERROR MAXIMUM VALUE
CYCLE APPROXIMATE EXACT OF OF
NUMBER OPTIMIZATION ANALYSIS APPROXIMATION CONSTRAINT
INITIAL 1.000000E+02 2.135050E-02
1 1.013803E+02 1.013803E+02 0.000000E+0C0 -8.522272E-03
2 1.001399E+02 1.001399E+02 0.000000E+00 5.675554E-04
3 9.959965E+01 9.959965E+01 0.000000E+00 8.283854E-04
4 9.902927E+01 9.902927E+01 0.000000E+00 3.115296E-03
5 9.873276E+01 9.873276E+01 0.000000E+00 1.069272E-02
6 9.869451E+01 9.869451E+01 0.000000E+00 5.217791E-03
7 9.844659E+01 9.844659E+01 0.000000E+00 8.577228E-03
8 9.706750E+01 9.706750E+01 0.000000E+00 2.523625E-02
9 9.831521E+01 9.831521E+01 0.000000E+00 -2.052307E-03
10 9.738248E+01 9.738248E+01 0.000000E+00 1.018381E-02
11 9.730855E+01 9.730855E+01 0.000000E+00 4.118681E-03

Cycle | Obj. Angle 1 Angle2 | Angle3 | Angle 4 Angle 5 Angle 6 Angle 7 Angle 8
0 100.00 63.00 108.0 18.00 108.00 108.00 18.00 108.00 63.00
1 101.38 59.56 86.82 21.60 86.36 86.40 21.60 86.40 57.01
2 100.14 52.74 94.59 25.94 92.78 84.21 25.92 83.39 45.61
3 99.60 45.66 113.50 31.19 111.34 87.16 31.12 66.71 40.90
4 99.03 41.23 11445 3743 126.82 104.59 37.38 53.36 37.85
5 98.73 40.70 137.37 36.94 124.94 83.67 3091 42.69 34.83
6 98.69 39.68 11842 29.54 107.71 66.94 37.09 4746 27.85
7 98.45 39.18 13495 3228 129.56 61.36 3252 37.97 26.65
8 97.07 38.61 108.15 34.32 143.55 49.09 39.03 45.56 26.82
9 98.32 38.15 118.95 30.89 132.42 45.62 37.15 42.78 2643
10 97.38 39.10 130.85 33.98 120.35 50.21 40.87 47.06 25.34
11 9731 38.93 123.31 37.38 126.05 46.23 41.40 44.49 2553

Table 1 Summary of the design cycle history of each design variable used in the optimization problem.
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The data output listing provides several indicators of the validity of the optimization
run. First, the fractional error of approximation is the difference between the values
of the objective function calculated from the approximate model and the finite element
analysis for each design cycle. A large fractional error would indicate that the move
limits for the problem were too large and that smaller limits should be used. The error
for eacﬁ iteration of the present analysis was zero. Therefore, the move limits which

were used were not too large.

The data output also indicates the maximum value of the constraints for each design
cycle. From comparison to Equation (13), it would be expected that this value be negative
for this optimization. However, because trying to achieve exactly zero in a computer
application is not meaningful, constraints are not considered violated unless they are
larger than some small positive number. Thus, not all the values listed in the data output

necessarily represent violated constraints.

Not shown in the data output above, but contained in the data file, is the ending density
of the design sensitivity matrix. The design sensitivity matrix is a table listing the design
sensitivities for each of the responses of the problem as calculated with MSC/NASTRAN.
The density indicates the percentage of nonzero terms appearing in the matrix. The
ending density of this matrix for the present optimization was 91.93%. That is, 91.93%
of the design responses were showing a sensitivity to changes in the design variables. A
small density value would be an indicator that very few design responses were changing
with changes in the design variables and that the problem may be poorly or incorrectly
specified. The value for this run was quite large and indicated that nonzero sensitivities

were being calculated in the optimization.

The optimization algorithm achieved hard convergence when the maximum number

of design iterations allowed for the problem (eleven) was reached. The objective function
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moved from a starting value of 100 dB to a final value of 97.31 dB. However, initial
analysis of the cabin interior indicated that the maximum acoustic pressure in the cabin
at the start of the optimization process was 101.31 dB. Thus, the initial objective function
value of 100 dB was in violation of the design constraints of the problem and the value
of the objective increased on the first iteration. This increase moved the objective and
design variables into a usable and feasible solution region. Subsequent design cycles each

reduced the value of the objective function with the exception of iteration number nine.

In Figure B24, it is apparent that the composite material is no longer symmetric
after optimization. From a starting lay up of (63/108/18/108/core/108/18/108/63), the
lamination angles have moved toward a iay up of (38/123/37/126/core/46/41/44/25). The
four face sheets on the outer surface of the composite appear to be moving toward a
cross-ply orientation (i.e. 35/125/35/125), while three of the four inner face sheets are

moving to a lamination angle of 40°.

Figure B25 is a comparison of the sound pressure level before and after lamination
angle optimization. Shown is the pressure over the range of optimization frequencies
at the response point located near the rear window in the starboard side of the aircraft.
Each peak in this region of the response corresponds to a fluid resonance. This was the
response location in the passenger cabin having the largest sound pressure peak prior to
optimization. A general decrease in the sound pressure levels at this location is apparent
over the frequency range of optimization. In particular, the highest response peak in the

region has been reduced from 101.31 dB to 97.28 dB, a reduction of 4.03 dB.

The comparison of the acoustic pressure at this same location before and after
optimization is shown for a broad range of excitation frequencies in Figure B26. The
limits of the optimization range are shown in this figure for reference. While the noise

levels have decreased over the range of optimization frequencies, they have increased
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for other frequencies in the response. In particular, a substantial increase in the acoustic
pressure response is noticeable in the range from 110 Hz to 160 Hz. Comparisons of
the acoustic response before and after optimization for the remaining response points in

the fluid are provided in Appendix C.

The peak sound pressure level in the response occurs at an excitation frequency of
203 Hz. A fringe plot of this response before optimization is shown in Figure B27. Note
that this response is very similar to a cylindrical mode shape of (1,2,3). A fringe plot
of the acoustic pressure response at this same frequency after optimization is shown in
Figure B28. While the shape of the response has not changes appreciably from before

optimization to after, the magnitude of the response has been decreased.

Similar fringe plots are shown for the structural response at 203 Hz in Figures B29
(prior to optimization) and B30 (after optimization). From these figures, a change in the
structural response is evident in the region at the bottom of the fuselage forward of the

rear passenger compartment bulkhead.

To reduce the sound pressure levels in the passenger cabin, the structural modes
are modified such that they no longer couple efficiently with the acoustic modes in the
range of optimization frequencies. The structural modes are modified by changing the
lamination angles of the fuselage sandwich composite material. The fringe plots of the
structural response show that in the areas where the response has changes appreciably,
it appears to be moving to a response shape which will couple less efficiently with the
acoustic response shape at 203 Hz. As structural modes decouple from a particular fluid
mode, they may couple with other fluid modes, thus increasing the response at those
excitation frequencies. Thus, as shown in the figures for this work, the sound pressure

level may actually increase at frequencies outside the range of optimization frequencies.

Recall that for this work, the optimizer did not have control over the lamination
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angles in the windows of the aircraft. It was not possible to modify the response
characteristics of these regions. However, the modes of the windows appeared to be
significant contributors to the acoustic response in the passenger cabin. In particular,
it was noted that the locations of the windows approximately coincided with the “anti-
nodes” of the fluid response at 203 Hz. The contribution of these window modes coupled
with the fact that contribution could not be modified with this optimization scheme may
have prevented a further reduction in the passenger cabin sound pressure levels.

The acoustic pressure levels at the response points in the passenger cabin have been
successfully reduced through an optimization of the lamination angles in the cabin. As
anticipated, an increase in sound pressure level was noted in areas of the response outside

the range of the optimization frequencies.
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Chapter 5 Conclusions

The Beech Starship was modeled and the lamination angles in the fuselage were
optimized to achieve a reduction in the interior noise levels. Point forces simulating
the structure borne noise produced by the engines were applied to the model. These
forces were the noise source for the problem. Optimization of the lamination angles was
performed over a frequency range of 185 Hz to 210 Hz. Ten response locations in the
fluid were used to define the constraints of the problem. The objective function was
minimized with the constraint that it be equal to the maximum sound pressure level in
the set of response locations. This formulation had the potential to reduce the sound

pressure level at several locations and frequencies in the fuselage cabin.

Prior to optimization of the fuselage, the optimization formulation was applied to a
thin, cylindrical shell. Boundary conditions and point forces were applied to the shell
to facilitate the solution of the shell equations of motion by analytical means. These
analytical solutions were used to validate numerical solutions for the motion of the shell
and for the sensitivity of acoustic pressure to lamination angle. Particular attention
was given to differences between the partially-coupled analytical solution and the fully-

coupled numerical solution.

Results from the analysis of the cylinder showed good correlation between the
analytical and numerical solutions. The importance of the coupling of the fluid to the
motion of the cylinder became apparent in the design sensitivity analysis. The acoustic
peaks in the numerical response should show some sensitivity to changes in lamination"
angle. The analytical solution used in this work was partially-coupled, and, as anticipated,

such a sensitivity was not present in the analytical solution.

32



The peak acoustic response in the Starship was reduced by 4.03 dB through an
optimization of the lamination angles of the structure. Similar sound pressure level
reductions were attained at other locations in the passenger cabin. The optimization
run was terminated after 11 iterations. The fuselage composite material was no longer
symmetric after optimization. The outer four face sheets appeared to be moving toward a
cross-ply configuration, while three of the four inner face sheets were moving toward the
same lamination angle. Sound pressure level increased at several excitation frequencies

not included in the range of frequency optimization range.

Not all areas of the fuselage structure were included in the optimization. Modes
outside the portion of the structure included in the optimization were still manifested
in the acoustic response after optimization and may have prevented a further reduction

in noise level.

This work has successfully demonstrated the feasibility of reducing aircraft interior
noise over a range of excitation frequencies through optimization of the composite
lamination angles of the aircraft. Significantly, this noise reduction was attained on
an actual aircraft model, rather than a thin, cylindrical shell fuselage model. A reduction
in sound pressure level was also achieved at a number of points in the cabin interior and

over a range of excitation frequencies.

Careful consideration must be given to which areas of the aircraft are to be optimized
and over what frequency range the optimization should take place. Areas of the fuselage
which are not included in the lamination angle optimization may still have an effect upon
the acoustic response after optimization. For frequencies not included in the optimization
range, the acoustic pressure can increase after optimization. Care must be exercised to
ensure that an acoustic response field is not created that passengers would find more

unpleasant than the original acoustic field.
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This work did not consider any effects that lamination angle optimization might have
upon the structural integrity of the aircraft. Clearly, these effects cannot be ignored by
the aircraft manufacturer and they would take precedence over the acoustic benefits of
this analysis.

This work used point sources to model the structure-borne noise produced by the
engines. As an extension of this work, the model could be modified to include other
noise sources. Some of these sources might be propeller noise or boundary layer noise.
The effects of changing the mounting locations of the engine could also be investigated.
For example, many small airplanes the same size class as the Starship have engines
mounted on the aft portion of the fuselage, rather than on the wings. Investigations of

these types would be of great applicability to the aircraft manufacturing industry.
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Appendix A Equations of Motion for a Thin,
Specially Orthotropic Cylindrical Shell

In this appendix, a solution for the thin cylindrical shell equations of motion for
specially orthotropic materials is developed. TheA Donnell-Mushtari equations of motion
are summarized. More detailed theories are available. For these theories, the reader is
referred to the literature [29, 34]. A solution for a particular set of boundary conditions
and applied forces is given. This solution was in turn used for work appearing in Chapter

3 of this research. A solution is also developed for the fluid inside the shell.

The Donnell-Mushtari equations of motion for a thin, specially orthotropic single-

layer circular cylinder including damping effects are given by {29, 33]:

Ly Ly Lzl |u fe
I:L21 Loy Lzs} [vj| = (_1__EV02_V10) [fo} (A1)
L31 L3y L33 | [w o Ir
where
Ly = 92 + G(l - VO:(:V:I:O) 9? +7(1 - Vb‘a:VxO)g_ _ Psaz(l - VOszG)a_z
Os? E.. 002 E.:h ot E.. ot?
Ly = vzoFgs + G(]- - Vﬁ:chG) 62
j - 0s00
Lys = vps Fog O
E,, 0Os
Ly = Vo Egg + G(1 — vgyvgg) 02
E.. 0s00
L22 — G(l - VGzV:EG) 82 + E99 62 +7(1 - Vﬂzyzﬁ)g _ Psaz(l - V92:V:1;9)_Qi
E,. 0s?  E,, 062 E..h Ot E.. ot?
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where

s =

(A3)

a
Here, u, v, and w represent the axial, circumferential, and radial displacements of the
middle surface of the shell, ~ represents the shell thickness, a its radius and v is the
structural damping coefficient. On the right-hand side, fz, fy, fr represent forces applied
to the cylinder in the longitudinal, circumferential, and radial directions respectively. If

boundary conditions of
v(0,0) =v(8,])=0
w(6,0) = w(6,1) =0 (A4)
u, v, w(0,2) = u,v,w(d + 2nr,z) (periodicity)

are applied and one assumes a harmonic time dependance, then a general solution for

Equation (Al) can be written

u(f, z,t) = ™ Z Z c0s (Am8)[Umn cos (n) + Uy, sin (n8)]

m=0 n=0
[o¢) o0
v(0,z,t) = e Z Z sin (A 8)[Vina sin (n) + Vi, cos (nf)] (AS)
=1 n=0 .
i
w(0,2,t) = " Y ") " sin (A 5)[Winn cos (nb) + Wy, sin (n6)]
m=1n=0
where
Am = (A6)

The boundary conditions shown in Equation (A4) are commonly referred to as the
boundary conditions for a “shear diaphragm” , or “free support” [29]. It should be stressed
that this particular set of boundary conditions was applied so as to make it possible to

write a closed-form solution for Equation (A1). Proceeding with this derivation, if point
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forces of

fo=0 (A7)
fr = F,,e"wta(x - %) [6(6) + 6(8 — )]

are applied to the cylinder, the radial force can be expanded in terms of the eigen

functions of the cylinder’s radial displacement

o0 o0
fr(8,z,t) = et Z Z sin (A 8)[Fmn cos (n8) + F,, sin (nd)] (A8)
m=1n=1
where
2¢ ., (m7
Fop = o~ sin (T> [cos (n7) + 1] (A9)
Frn =0

Note that F7},, becomes zero for this particular choice of f Substituting Equations (A5)

and (A8) into Equation (A1) yields, after some rearrangement

a1 +Q a1 a13 Umn 1 0
as a224+0 a3 Von | = 53 0 (A10)
asy as2 asz — Q Wmn Ps an

and

—a21 42249 —a3

rn +0 —ay a13
as1 —a3zy  azz — )

Uk L [0
Vin | == 0

*
Wen
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where

. C? 1—
a11 = 2NiWWmy — a_é:{/\%n +n? G( VHszG)}

sz
C? vz Fog + G(1 — vgv
agy = a_an)‘m bz £ E( 82V6)
T
C? vy, E
aj3 = a—f)tm 92 66
b 4
C? vorFgg + G(1 — vy v
gy = ;ZA”)‘m os Ego E( bz Vaf)
T
azy = 2mwwmn ol ?{)‘m Exz + n Ezz
_ C} v Eg
az3 = —_aTn———Em
C? vy, E
agz) = ——a-g-)\m % 66
T
asy = Ci  VesEoo
a2 Eg.
X C? p? verFgp + 2G(1 — vgpv E,
azs = 2Niwwmy + a_2L_12a2 {/\fn + 2n2)\3n b2 89 Ez(x 92720) + n4—E—z—i—}
(A12)
and B
2 T
CL - ps(l - VG:EV:CO)
2 (A13)

Q= psa®(l — VG:Z:V:::G)WYZ _ _C%_wz
Frr )

Note that the structural damping coefficient v has been replaced by a frequency-dependent

modal damping term 7 where

7

It can be seen from examination of Equations (A10) and (A11) that it is not necessary
to carry along both sets of terms. Either the starred or unstarred terms can be used as a
complete solution. For the case of eigenvalue analysis, both Equations (A10) and (A11)
will yield the same eigenvalues. Furthermore, for the forced frequency response analysis
where the applied forces are as shown in Equation (A7), the right-hand side of Equation

(A11) becomes zero. Thus, the starred coefficients are also zero. This work uses the
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unstarred terms of Equation (AS5) as a complete solution. That is

u(f, z,t) it Z Z Umn €08 (A 8) cos (n)

m—0 n—-O
v(8,z,t) = ™! Z Z Vinn sin (A 8) sin (nd) (A15)
m-—l n=0
w(b,z,t) = Z ZWmn sin (Ams) cos (nd)
m=1n=0

For the fluid-filled region inside the cylindrical shell, the wave equation in cylindrical
coordinates can be used to describe the acoustic pressure at any point in the fluid. The

wave equation is given by

9 1%

- EW = 0 (A16)

where, in cylindrical coordinates,

2 190 19 2

V=t et et o (A0
Choosing boundary conditions of
p(r,0,0,t) = p(r,0,1,t) =0
op(a,0,z,t) ?w(,z,t)
or - Pf ot? (A18)

|p(0,6,z,t)| < co (boundedness)

p(r,0,z,t) = p(r,8 + 27n,z,t) (periodicity)
allows one to couple the motion of the fluid to that of the cylinder and still write a

relatively simple closed-form solution for the acoustic pressure in the fluid. It should be
noted that this particular set of boundary conditions is chosen so that a simple closed-
form solution can be developed for validation and comparison to numerical finite element
solutions. This same method was used by SenGupta et al. [15] for the same purpose.
Applying these boundary conditions and using the results for the cylindrical shell yields

the following expression for p

p(r,0,z,t) = e Z ZJ (0tm) Sin (A ) [P cos (n6) + P, sin (n8)]  (A19)

m=1n=1
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where J,, represents the n-th order Bessel function of the first kind and, written in closed-

form,
P B C’mnpfwz
me 2 Jn(ama) — amInti1(ama)
Prn=0
and

5 w? m2r?

ol = — — ——
™o cl 12

(A20)

(A21)

As was the case for the structure, note that for the forces applied to the cylinder as shown

in Equation (A7), the starred terms in Equation (A19) become zero. This work will take

p(r,0,z,t) = Z Z Prndn(amr) sin (Aps) cos (nf)

m=1n=1

45

(A22)



Appendix B Figures
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Figure B1 MSC/NASTRAN design cycle flow chart [24].
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Figure B2 Schematic representation of objective function and acoustic response. As the
objective function is minimized, the sound pressure level is likewise reduced.

eSS

Figure B3 Exploded view of the fluid-structure problem for the thin, cylindrical shell
filled with air. The forces applied to the model for this analysis are also shown.

47



Figure B4 Finite element fluid-structure model for the thin, cylindrical shell filled with air.
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Figure B5 Radial displacement of a thin, cylindrical shell over a range of excitation frequencies. Displacement is
calculated at the point r =@, § =0, z = % Analytical and numerical modal solutions shown.
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Figure B6 Sound pressure level within the thin, cylindrical shell over a range of excitation frequencies. Pressure is
calculated at the fluid pointat r = %, 6 =0, z = % Analytical and numerical modal solutions shown.
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Figure B7 Radial displacement of a thin, cylindrical shell over a range of excitation frequencies.
Displacement is calculated at the point r = a, 6 =0, z = -;- Analytical and numerical
direct solutions shown. The numerical solution is for the ranges of 20 to 60 Hz and 90 to 110 Hz.
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Figure B8 Sound pressure level in a thin, cylindrical shell over a range of excitation frequencies.
Displacement is calculated at the point r = 5, § =0, z = % Analytical and numerical
direct solutions shown. The numerical solution is for the ranges of 20 to 60 Hz and 90 to 110 Hz,

Figure B9 Global and local material axes for a single-ply laminate. The lamination angle ¥
is measured counter clockwise from the global x-axis to the local material 1-axis [27].
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Figure B10 Sensitivity of acoustic pressure in the orthotropic cylinder with respect to changes in
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Figure B11 Analytical radial displacement at structural location § = 75.61°, = = 0.211
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Figure B14 Isometric view of the finite element mesh of the Starship fuselage. The fluid portion
of the model is not visible, as it is completely enclosed by the structural elements of the model.

Figure B15 Isometric view of the beam elements in the Starship finite element model.
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Y\l/x

Figure B16 Isometric view of the finite element mesh of the fluid inside the Starship cabin. In the
complete model of the Starship, these elements are completely enclosed by structural elements.

Figure B17 Isometric view of the Starship structure showing the location of the different materials used in the model.
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L

Figure B18 View of the Starship fuselage showing forces applied for this study. Shown are
the forces on the wing mounts and the forward bulkhead below the baggage compartment.
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Figure B19 Forced frequency response for the Starship finite element model. Structural displacement magnitude at
the point x=253.63, y=-34.71, z=99.93 (see Appendix C for an explanation of the Starship coordinate system).
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Figure B22 Forced frequency response for the Starship finite element model.
Acoustic sound pressure level at the point x=259.05, y=-18.52, z=129.15.
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Figure B23 Design cycle history for the objective function used in the optimization problem.
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Figure B24 Design cycle history for the design variables (i.e. the lamination angles) used in the optirnization problem
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Figure B25 Sound pressure level verses excitation frequency before and after lamination angle optimization. Shown
is the optimization frequency range for the response location at the rear window on the starboard side of the aircraft.
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Figure B26 Sound pressure level versus excitation frequency before and after lamination
angle optimization. Shown is the full excitation frequency range and the limits of the optimization
range for the response location at the rear window on the starboard side of the aircraft.

Figure B27 Acoustic pressure response in the passenger cabin at an
excitation frequency of 203 Hz prior to lamination angle optimization.
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Figure B28 Acoustic pressure response in the passenger cabin at an
excitation frequency of 203 Hz after lamination angle optimization.

Figure B29 Structural displacement magnitudes at an excitation
frequency of 203 Hz prior to lamination angle optimization.
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Figure B30 Structural displacement magnitudes at an excitation
frequency of 203 Hz after lamination angle optimization.
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Appendix C Sound Pressure Level at All
Response Points for the Optimization Problem

This appendix presents the acoustic pressure response before and after optimization
of the lamination angles at all ten response locations used for the optimization. Also
included is a brief explanation of the coordinate system used for the model and a table

of the (x,y,z) locations of the response points.

A Cartesian coordinate system was used to describe the locations of the nodes in
the finite element model. The x-axis was aligned with the longitudinal (roll) axis of the
aircraft and the z-axis was aligned with the vertical (yaw) axis of the Starship. The nose
of the aircraft was located at the point (0,0,72). Additional points of reference in the

model are listed in Table Cl1.

Reference Point ()f_l:gl;;t?;ﬁt,'?:)

Nose of aircraft 0

Front of passenger cabin 170
Forward wing mounting brackets 237
Aft wing mounting brackets 324
Rear of passenger cabin 357
Forward bulkhead below baggage compartment 357
Aft bulkhead below baggage compartment 416
Tail of aircraft 537

Table C1 Table listing the flight stations (x-axis locations) of a number of geometrically
significant points in the Starship finite element model. Stations are listed in inches.

A total of ten fluid nodes were used as response locations for the optimization

problem. These grids were chosen to represent the approximate listening locations of
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the passengers within the cabin. Table C2 provides a listing of the (x,y,z) locations for

each of these nodes.

Node Description x-coordinate | y-coordinate | z-coordinate
First window, port side 220.3 -15.6 122.3
First window, starboard side 221.50 15.2 125.6
Second window, port side 249.7 -12.4 123.3
Second window, starboard side 250.5 14.9 125.14
Third window, port side 282.8 -22.6 1249
Third window, starboard side 279.1 16.8 120.8
Fourth window, port side 310.1 -19.8 122.5
Fourth window, starboard side 312.5 13.22 124.7
Fifth window, port side 337.3 -15.5 122.9
Fifth window, starboard side 339.6 19.9 119.7

Table C2 Table of response node locations in the model. Locations are in inches.

Figures C1 through C10 show the acoustic pressure response verses excitation

frequency for each of the nodes in Table C2. The responses before and after optimization

and the frequency range of optimization are also shown.
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Figure C1 Sound pressure level before and after optimization for the response location at the first
window on the port side of the aircraft. The peak response has been reduced by 4.01 dB.

Before Optimization
10F------ After Optimization
I ———— Optimization Range

Sound Pressure Level (dB)

!
|
|
|
|
|
!
|
|
|
1

Eelli ) L " | . . L " | L L L

50 100 150 200 250
Frequency (Mz)

Figure C2 Sound pressure level before and after optimization for the response location at the first
window on the starboard side of the aircraft. The peak response has been reduced by 3.81 dB.
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Figure C3 Sound pressure level before and after optimization for the response location at the second
window on the port side of the aircraft. The peak response has been reduced by 3.96 dB.
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Figure C4 Sound pressure level before and after optimization for the response location at the second
window on the starboard side of the aircraft. The peak response has been reduced by 3.79 dB.
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Figure C5 Sound pressure level before and after optimization for the response location at the third
window on the port side of the aircraft. The peak response has been reduced by 3.76 dB.
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Figure C6 Sound pressure level before and after optimization for the response location at the third
window on the starboard side of the aircraft. The peak response has been reduced by 3.77 dB.
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Appendix D Computer Codes

This appendix contains a source code listing of the FORTRAN and Mathematica*
programs written in support of this work. Also included in this Appendix is a portion
of the MSC/NASTRAN bulk data file showing the structure of the optimization used
for the present work. The codes listed in this Appendix have been written specifically
for this study and should be considered to be research code only. They are provided
for completeness. Their successful operation cannot be guaranteed outside the scope of

the present work.

D.1: FORTRAN Program compfreq.f

This is a program written in the FORTRAN language and it was used in the present
work to calculate the forced frequency response of the fluid/structure cylinder in Chapter
3. This code makes calls to Bessel function algorithms. These algorithms can be found
in the literature [35]. The structure is assumed to be specially orthotropic and the fluid
is ideal. Material properties for the structure are read from the file “layers.dat”. The
Donnell-Mushtari theory is used to describe the motion of the cylinder. The cylinder
displacements are coupled to the fluid in the cylinder. However, the fluid backpressure
is not coupled to the structure.

As outlined in Appendix A, the boundary conditions applied to the structure are those
for a simple support. Boundary conditions of p=0 are applied to the fluid endcaps of the

system. The natural vibration frequencies for the structure can be output to a separate file.

4 Mathematica is a registered trademark of Wolfram Research, Inc.
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program compfreq

Program to calculate the nautral frequencies of free vibration

for a laminated orthotropic cylindrical shell and the forced
frequency response. The shell contains an ideal fluid (air) and the
acoustic response of this fluid to the vibration of the shell is
determined. Bounday conditions are those of simple support,

with no constraints in the axial direction.

Input files include layers.dat, a file which contains data about
the number of lamina in the shell and the material properties for
each.

Output files include:

freqg.out, a file which contains the mode numbers and natural
frequencies of the cylinder.

disp.out, contains displacement information at a point on the shell
and acoustic pressure information at a point in the £fluid.

Declarations

implicit real(a-h,o-y)
implicit complex(z)
real 1,lam,nul2,nu2l,hh,kk

character*15 infile
parameter (pi=3.141592654,max£f=150,moden=40, modem=40)

dimension C(4,3,3),A(3,3),Ds(3,3),D(3,3).,h(4,2),
& u({maxf),v(maxf) ,wi{maxf),p(maxf), frequency (maxf)

logical print

Begin program
zi=cmplx(0.0,1.0)

Specify geometry of the shell

1=164.0

r=35.0
rzero=0.0
small=10.0E~25

Density of the fluid (air) (slugs/in**3)
rhof=1.17e-7

Acoustic speed of sound (in/sec)
co=13620.0

Structural damping
eta=0.0

Applied force (lbs.)
Fo=0.3

Acoustic reference pressure (psi)
pref=2.9e~9

Specify location of interest (tt in radians)

rr=34.99991502
tt=1.1781
yvz=(23.4285)/r

Frequency increment (Hz)
step=1.0

Starting frequency
freqg=1.0*(2.0*pi)

Print natural freguencies once
print=.FALSE.

Input file
infile="layers.dat"
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do 50 i=1,3

do 55 j=1,3
aA(i,j)=0.0
D(i,3j)=0.0
DS(i,j)=0.0

continue

continue

Get material properties from layers.dat file

open{unit=10, file=infile, status=‘'0ld"’)
read(10,1000) layers

do 100 k=1, layers
read (10, *)E1l,E22,nul2,nu2l,G
write(*,*)Ell,E22,nul2,nu2l,G
read (10, *)hh, rhos
write(*,*)hh, rhos

continue

close(10)
pause

Prepare tecplot natural frequencies output file

if (print) then
open{unit=20, file='freq.out’, status='unknown’)
write(20,1005) ‘TITLE = “Variation of Frequency with m"’
write(20,1005) ‘VARIABLES = "m","n"“,"‘w_1","‘w_2","‘w_3""'
endif

Prepare tecplot displacement output file

open(unit=30, file='disp.out’, status='unknown’)
write(30,1005) ' TITLE="Forced Fluid/Structure Cylinder Resp."’
write(30,1005) 'VARIABLES="Freqg", "u","v*, "w", "p""’
write{(30,1005)'ZONE T="Analytic"’

do 305 k=1,maxf
zu=cmplx(0.0,0.0)
zv=cmplx(0.0,0.0)
zw=cmplx(0.0,0.0)
zp=cmplx(0.0,0.0)
do 300 n=0,moden
if (print) write(20,1010)’'ZONE T="n=',n, "’
do 350 m=1,modem

lam= (m*pi*x) /1
kk=hh*hh/(12.0*x*r)

Calculate alpha’s

pll=(-lam*lam-n*n* (G*(1.0-nul2*nu2l)/E11))

pl2=lam*n* ( (nul2*E22+G* (1.0-nul2*nu2l))/E11l)

pl3=lam*nul2*E22/E1l1l

p2l=lam*n* ( (nul2*E22+G* (1.0-nul2*nu2l))/E1l1l)

p22=-lam*lam* (G* (1.0-nul2*nu2l)/E11l) -n*n*E22/E11

p23=-n*E22/E11

p3l=-lam*nul2*E22/E11

p32=n*E22/E11

p33=E22/E1l1l+kk* (lam*lam*lam*lam+2.0*n*n*lam*lam*
& ((nul2*E22+2.0*G*(1.0~nul2*nu2l) ) /E11)+ (B22/E11)*
& n*n*n*n)

¢ Define cubic equation constants

o]

Cl= (pll+p22-p33)
C2= (pll*p22-pll*p33-p22*p33+p23*p32-pl2*p2l+pl3*p3l)
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Solve

C3= (pll* (p23*p32-p22*p33)+pl2* (p21*p33~p23*p31)+
pl3* (p31*p22-p21*p32))

equation for omega squared.

cc=(1.0/3.0)*(3.0*C2-C1*C1)
dd=(1.0/27.0)*(2.0*C1*C1*C1-9.0*C1*C2+27.0*C3)}

delta=(dd*dd/4.0}+ (cc*ce*ce/27.0)

if (delta.LT.0.0) then
partone=-dd/2.0
parttwo=SQRT (-1.0*delta)
zZPP=cmplx (partone, parttwo)
zQQ=cmplx (partone, -parttwo)
else
partone=-dd/2.0
parttwo=SQORT (delta)
zPP=cmplx ( (partone+parttwo) , rzero)
zQQ=cmplx ( (partone-parttwo),rzero)
endif

ZPP=2zPP** (1.0/3.0)
zQQ=zQQ** (1.0/3.0)

zfirst=~0.5% (zPP+2zQQ)
zsecnd=~0.5*% (zPP~zQQ) *SQRT(3.0) *zi

partone=real (zfirst) +real (zsecnd)
parttwo=imag(zfirst) +imag(zsecnd)
parttre=real (zfirst)-real (zsecnd)
partfor=imag(zfirst)-imag(zsecnd)

Zrootl=2PP+zQQ~C1/3.0
zroot2=cmplx( (partone-Cl/3.0) ,parttwo)
zroot3=cmplx{ (parttre-Cl/3.0),partfor)

zfreql=SQRT (zrootl*E1ll/ (rhos*r*r* (1l-nul2*nu2l)))
zfreq2=SQRT (zroot2*El1l/ (rhos*r*r* (1-nul2*nu2l)))
zfreqg3=8SQRT (zroot3*Ell/ (rhos*r*r* (1l-nul2*nu2l)))

if (imag(zfreqgl) .NE.0.0.OR.

imag(zfreq2) .NE.O.0.OR.

imag(zfreq3) .NE.0.0) then

write(*,1005) ‘Warning: Non-zero imaginary frequency’
endif

if (print) then
write(20,1015)m,n,real (zfreql/ (2.0*pi)),
real (zfreqg2/(2.0*pi)),
real (zfreq3/(2.0*pi))
if (n.EQ.moden) then

close(20)
print=.FALSE.
endif

endif

Output for non-dimensional parameters

if (print) then
x=lam/pi
zoutl=SQRT (zrootl)
zout2=8SQRT (zroot2)
zout3=8QRT (zroot3)
write(20,1020)x,n,real (zoutl),
real (zout2),
real (zout3)
if (n.EQ.modes) close(20)
endif

call magnitude(zfreql, freql)
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call magnitude(zfreqg2, freqg2)
call magnitude (zfregqg3, freg3)

Cls=E11l/ (rhos* (1.0-nul2*nu2l))
Calculate force coefficient

Frn=r*(2.0/(pi*l))*Fo*sin(m*pi/2.0) *(1l.0+cos(n*pi))
rootA=-SQRT (~ (Cls/ (r*r) ) * (lam*lam*G* (nul2*nu21-1.0)+

& n*n* (E22-E11+G* (1.0/nul2-nu2l))) /E11)
rootB=-8SQRT (~ (Cls/ (r*r))* (lam*lam* (nul2*nul2*E22-Ell+

& nul2*G* (1.0-nul2*nu2l))+n*n*G* (nul2*nu2l1-1.0))/

& E1ll1)

beta =(Cls/(r*r))*(lam*lam+n*n*G* (1.0~-nul2*nu2l)/E11l)
gamma= (Cls/ (r*r))* (lam*lam*G* (1.0-nul2*nu2l) /E1ll+n*n*E22/E11)
xi ={Cls/(r*r))* (lam*n*nul2*E22+G* (1.0-nul2*nu2l))/E11

discr=SQORT( (beta+gamma) * (beta+gamma) +4.0* (xi*xi-beta*gamma) )

omegaC=0.5* ( (beta+gamma)+discr)
omegaD=0.5* ( (beta+gamma)-discr)

rootC=8SQRT (omegacC)
rootD=SQRT (omegaD)

zdet=cmplx ( (freq*freq-freq3*freq3),2.0*eta*freq*freq3)*
& cmplx ( (freq*freq-freq2*freqg2),2.0*eta*freq*freqg2) *
& cmplx( (freq*freg-freql*freqgl),2.0*eta*freg*freql)

zcofA=cmplx ( (freq*freg-rootA*rootd),2.0%eta*freq*roota)

zcofB=cmplx ( (freq*freqg-rootB*rootB),2.0*eta*freq*rootB)

zcofC=cmplx ( (freq*freqg-rootC*rootC),2.0*eta*freq*rcotC) *
& cmplx ( (freq* freg-rootD*rootD) ,2.0*eta*freq*rootD)

zAmn=- (Fmn/ (rhos*hh) ) *zcofA/zdet*1.0/ (r*r)
zBmn= (Fmn/ (rhos*hh) ) *zcofB/zdet*1.0/ (x*r)
zCmn=- (Fmn/ (rhos*hh) ) *zcofC/zdet*1.0/ (xr*r)

Sum displacements

zu=zu+zAmn*cos (lam*yz) *cos (n*tt)
zv=zv+zBmn*sin (lam*yz) *sin(n*tt)
Zw=zw+zCmn*sin (lam*yz) *cos (n*tt)

Solve for pressure coefficient
alphasqgr=(freg*freq) / (co*co)-lam*lam/ (r*r)

if (alphasqr.LT.0.0) then
alph=SQRT (-1.0*alphasqr)
call cofimag(small,r,alph,n,bottom)
2Dmn= (zCmn*rhof*freqg*freq) /bottom
call bessimag(small,rr,alph,n,press)
elseif (alphasgr.GT.0.0) then
alph=SQRT (alphasqr)
call realcof(small,r,alph,n,bottom)
zDmn= (zCmn*rhof*freqg*freq) /bottom
call bessreal(small,rr,alph,n,press)
elseif (alphasqr.EQ.0.0) then
write(*,*) 'Alpha = 0.0’
endif

Sum pressure
zp=zp+zDmn*press*sin (lam*yz) *cos (n*tt)

350 continue
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300

continue

Dummy print

write(*,*) ‘Complex pressure = ’,zp
write(*,1) ‘Complex data calculated for .,k

Convert complex displacements, pressure to magnitudes

call magnitude(zu,u(k))
call magnitude(zv,v(k))
call magnitude (zw,w(k))

Convert pressure to dB scale

call magnitude(zp,p(k))
p(k)=20.0*(0.4342944819*1og (p (k) /pref))

Write to tecplot file

frequency(k)=£freq/ (2.0*pi)
write(30,1025) frequency(k),10.0E-10,v(k),w(k),p(k)

Increment freguency

305

1000
1005
1010
1015
1020
1025

freg=freg+step* (2.0*pi)
continue
close(30)

format(a28,i4)

format(i2)

format (a)

format(al0,i2,al)

format (i3, 1x,1i3,3(1x,£12.2))
format(£12.6,1x,1i3,3(1x,£12.6))
format(£7.2,4(1x,e16.9))

stop
end
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subroutine magnitude(z,x)

Subroutine to return the magnitude x of a complex argument z

implicit real(a-h,o-y)
implicit complex(z)

partone=real {(z)
parttwo=imag(z)

x=SQRT (partone*partone+parttwo*parttwo)

return
end
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subroutine realcof(tiny,a,alph,n,out)

Subroutine to return the denominator of the pressure coefficient term.
Used when the argument of the n-th order bessel function is real.

implicit real(a-h,o-y)
implicit complex(z)

zi=cmplx(0.0,1.0)
x=alph*a
if (n.EQ.0) then

terml=BESSJO (x)
term2=BESSJL (x)
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elseif (n.EQ.1l) then
terml=BESSJ1 (x)
term2=BESSJ (2, X)
else
terml=BESSJ(n, x)
term2=BESSJ( (n+1) ,x)
endif

out=(n/a)*terml-alph*term2

if (ABS(out).LT.tiny) then
if (out.LT.0.0) then
out=-1.0*tiny
else
out=tiny
endif

endif
return
end
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subroutine cofimag(tiny,a,alpha,n,out)

Subroutine to return the denominator of the pressure coefficient term.
Used when the argument of the n-th order Bessel function is complex.

implicit real (a-h,o-y)
implicit complex(z)

x=alpha*a

if (n.EQ.0) then
terml=BESSIO (x)
term2=BESSI1 (x)
elseif (n.EQ.1l) then
terml=BESSI1 (x)
term2=BESSI(2,x)
else
terml=BESSI(n,x)
term2=BESSI( (n+1),x)
endif

out=alpha*term2+(n/a) *terml

if (ABS(out).LT.tiny) then
if (out.LT.0.0) then
out=-1.0*tiny
else
out=tiny
endif
endif

return
end

FHRAAKAKRAA A KA AAARAT AT IR AT ATk Rk ddkdkhokhdkddkddhdhkkhokkdhdkddddk ok dhdodkdhdkhkdk
subroutine bessreal (tiny,r,alpha,n,out)

Subroutine to return the n-th order bessel function of a real argument.

implicit real (a-h,o-y)
implicit complex (z)

x=r*alpha

if (n.EQ.0) then
out=BESSJO (x)
elseif (n.EQ.1l) then
out=BESSJ1 (x)
else
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out=BESSJ (n, x)
endif

if (ABS(out).LT.tiny) then
if (out.LT.0.0) then
out=-1.0*tiny
else
out=tiny
endif
endif

return
end
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subroutine bessimag(tiny,r,alpha,n,out)

Subroutine to return the n-th order modified bessel function of a real
argument.

aaoaon

implicit real (a-h,o-y)
implicit complex (z)
x=r*alpha
if (n.EQ.0) then
out=BESSIO (x)
elseif (n.EQ.1) then
out=BESSII1 (x)
else
out=BESSI (n,x)
endif
if (ABS(out).LT.tiny) then
if (out.LT.0.0) then
out=-1.0*tiny
else
out=tiny
endif
endif

return
end

D.2: Mathematica™ program sensitivity.m

This computer code was written for use by the Mathematica™ computer mathematics
program [36]. Like the compfreq.f program (above), it calculates the displacements of the
thin, cylindrical shell and the acoustic pressure inside the shell. This code also calculates
the sensitivities of the shell structural displacement and the acoustic response to changes

in lamination angle in the structure.

The solution outlined in Appendix A is again used to describe the motion of the

cylinder. However, this solution is only valid for lamination angles near 0° or 90°;
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i.e. angles where the material becomes specially orthotropic. Therefore, the sensitivities
calculated by this code are approximations valid only near either of these two angles.

(*Mathematica program to determine radial displacement of a circular,

cylindrical shell using the Love-Timoshenko anisotropic operator.

Acoustic pressure at an interior point of the cylinder is also calculated

Sensitivity of these values WRT lamination angle psi near psi=0 is

determined. *)

(**)

LT={{1t11,1t12,1t13},{1t21,1t22,1t23},{1t31,1t32,1t33}}

pv={0, 0, Fnn}

(**)

(* Define general solution *)

u=Cos[lam*s] *Cos[n*th]

v=Sin[lam*s] *Sin[n*th]

w=Sin{lam*s] *Cos{n*th]

(**)

(* Define circular cylinder geometry *)

h=0.174

a=35.0

1=164.0

pi=3.141592654

(**)

(* Define material properties *)

E11=30.0*10"6

E22=0.75*10"6

nul2=0.25

nu21=0.00625

G12=0.375*10"6

rho=1.458*10"-4

(* Define fluid properties *)

rhof=1.17*10"-7

cnot=13620.0

pref=2.9*10"-9

(**)

(* Define A, B, and D matricies *)

AA={{Al1l,A12,A16},{A12,A22,A26}, {Al6,A26,R66}}

All=h*QB11

Al12=h*QB12

Al6=h*QB16

A22=h*QB22

A26=h*QB26

A66=h*QB66

(*BB={{B11,B12,B16}, {B12,B22,B26}, {B16,B26,B66}}

Bl1=0.5*h*h*QB11

B12=0.5*h*h*QB12

B16=0.5*h*h*QB16

B22=0.5*h*h*QB22

B26=0.5*h*h*QB26

B66=0.5*h*h*QB66*)

DD={{D11,D12,D16},{D12,D22,D26}, {D16,D26,D66}}

D11=(1/12)*h*h*h*QB11

D12=(1/12)*h*h*h*QB12

D16=(1/12)*h*h*h*QB16

D22=(1/12) *h*h*h*QB22

D26=(1/12) *h*h*h*QB26

D66=(1/12) *h*h*h*QB66

(**)

(* Define the reduced stiffnesses Qij (Jones p 46) *)

Ql1=E11l/(1-nul2*nu2l)

Ql2=nul2*E22/ (1l-nul2*nu2l)

Q22=E22/ (1-nul2*nu2l)

066=G12

(**)

{(* Define global reduced stiffnesses Qij-bar (Jones p 51) *)

OB11=011* (Cos [psi]) "4+2*(Q1l2+2*Q66) *Sin[psil *Sin[psil*Cos[psil *Cos[psil+
Q22* (Sin[psi]) "4

OB12=(Q11+Q22-4*Q66) *Sin[psi]*Sin[psi]*Cosipsil*Cos(psil+Q12* ((Sin[psil) "4+
(Cos[psil)"4)
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QB22=Q11*(Sinlpsi]) "4+2* (Q12+2*Q66) *Sin[psi] *Sin[psi) *Cos(psil*Cos[psi]+
Q22* (Cos[psi]) "4
QB16=(Q11-Q12~-2*Q66) *Sin[psi] *Cos [psi]*Cos[psi] *Cos[psi]+
(Q12-Q22+2*Q66) *Sin[psil*Sin[psi) *Sin[psi)*Cos[psil
QB26=(Q11-012-2*Q66) *Sin{psil*Sin(psi]*Sin[psi)*Cosipsil+
(Q12-Q22+2*Q66) *Sin[psi] *Cos[psi] *Cos[psi]*Cos [psi]
0B66=(Q11+Q22-2*Q12-2*Q66) *Sin[psi]l *Sin[psi]*Cos[psi]*Cos[psi]
+Q66* ((Sinlpsi]) "4+ (Cos[psi}) 4)
(* Define Donnell-Mushtari anisotropic operator *)
k= (h*h)/(12*a*a)
1tli=(A11/A22)*D(D[u,s],s}+2*(A16/A22)*D[D[u,s],th]+(A66/A22)*D[D[u,th],th]+
u* (a*a*h*rho/A22) *om
1t12=(A16/A22)D[D[v,s],s]+((A12+A66) /A22) *D[D[v,s],thl+(A26/A22) *D[D[v, th], th]
1t13=(A12/A22)*Diw, s]+(A26/A22)*D[w, th)
1t22=(A66/A22) *D[D{v,s],s]+2*(A26/A22)*D(D[v,s], th]+D[DIv, th], th]+
v* (a*a*h*rho/A22) *om
1t23=(A26/A22)*D[w,s]+D[w, th}
1t33=w+k* ((D11/D22)*DIDI[DI[DIw,s],s],s],s)+
2* ((D12+2*D66) /D22) *D[D[D[D[w,s],s], th]l, thl+D[D[D[D{w, thl,th],th],th])-
w* (a*a*h*rho/A22) *om
lt21=(A16/A22)D[D[u,s],s]+((A12+A66)/A22)*D[D[u,s],th]+(A26/A22)*D[D[u,th],th]
1t31=(A12/A22)*D[u, s1+{(A26/A22) *D[u, th]
1t32=(A26/A22)*D[v,s]+D[v, th]
(**)
(* Add Love-Timoshenko modifyer *)
lt22=lt22+k*(2*(D66/D22)*D{D[V,s],s]+3*(D26/D22)*D[D[v,s],th]+D[D[v,th],th])
1t23=1t23-k*((D16/D22) *D[D[D[w, s],s},s]+((D12+2*D66) /D22) *D[D([D[w, s],s).th]+
3*(D26/D22)*D[D[D{w,s], th],th]+D[D[D[w, th], th], th})
1t32=1t32-k*(2*(D16/D22) *D[D[D[v,s],s],s)+((D12+4*D66) /D22) *D[D[D[v,s],s]), th]+
4*(D26/D22) *D[D{D[v,s], th],th]+D[D[D{v, thl, thl, th])
1t33=1t33+k* (4*(D16/D22) *D[D[D[D{w,s],s],s], thl+
4*(D26/D22)*D[D[D[D([w, s],s],s],th])
(**)
(* Compute acoustic pressure *)
p=Sin[lam*s]*Cos[n*th] *BesselJ[n,alpha*rad]
lower=D[Besseld[n, (alpha*rbound) ], rbound]
alpha=Sqrt [om/ (cnot*cnot) - (m*pi)* (m*pi)/ (1*1)]
rbound=a
(**)
(* Define applied forced vector *)
cf=1/A22
Fmn=Fo*cf*Sin [m*pi/2]* (1+Cos[n*pil) *(2*a/ (pi*l))
Fo=0.3 ’
(**)
(*Define derivatives of the LT matrix WRT psi (lamination angle)*)
dltlli=D[1tll,psi]
dltl2=D([1t12,psil
dltl3=D[1t13,psi]
(**)
dlt21=D[1t21,psi}
dlt22=Dp[1t22,psi]
dlt23=D[1t23,psi]
(**)
dlt31=D[1t31,psi]
dlt32=D[1t32,psi]
dlt33=D{1t33,psil]
(**)
(* Remove trig terms from operator *)
tll=Simplify[Expand[1tl1l/u]]
tl2=Simplify[Expand[1t12/ul]
t13=Simplify[Expand[1tl13/u]l]
t21=Simplify[Expand{1t21/v]}]
t£22=Simplify[Expand[1t22/v]1]
t23=Simplify[Expand[lt23/v]]
t31=Simplify[Expand[lt31/w]]
t32=Simplify[Expand[1t32/w]]
t33=Simplify[Expand[1t33/w]]
(**)
(*Define lamination angle psi*)
psi=0.0
(**)
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1tll=Simplify[t1l]

1t12=Simplify[t12]

1t13=Simplify[t13]

1t21=Simplify[t21]

1t22=Simplify[t22]

1t23=Simplify[t23]

1t31=Simplify[t31]

1t32=Simplify[t32]

1t33=Simplify[t33]

(**)

dltll=Expand[dltll]

dltl2=Expand{dltl2]

dltl3=Expand[dltl3]

dlt2l=Expand[dlt21]

dlt22=Expand[dlt22]

dlt23=Expand{dlt23]

dlt3il=Expand{dlt31]

dlt32=Expand{dlt32]

dlt33=Expand{dlt33]

tll=Simplify(dltll]

t12=Simplify[dltl2]

£13=Simplify{dltl3]

£21=Simplify[dlt21]

£22=Simplify[dlt22]

£23=Simplify[dlt23]

t31=Simplify[d1t31]

£32=Simplify[dit32]

£33=Simplify[dlt33]

DLT={{d1lt11,d1t12,dlt13}, {d1t21,d1t22,d1t23},{d1t31,d41t32,d1t33}}

(**)

(* Specify structural location of interest *)

th=75.61* (pi/180)

s=(35.1428)*(1/a)

lam=(m*pi*a/l)

(* Specify fluid location of interest *)

rad=30.67

(**)

dltll=Simplify[tll]

dltl2=Simplify[t12]

dltl3=Simplify[t13]

dlt21=Simplify[t21]

dlt22=Simplify[t22]

d1t23=Simplify[t23]

dlt31=Simplify[t31]

dlt32=Simplify[t32]

dlt33=Simplify[t33]

(**)

LT={{1t11,1t12,1t13},{1t21,1t22,1t23},{1t31,1t32,1t33}}

DLT={{dlt11,d1t12,d1t13}, {dltc21,d1t22,d1t23}, {d1t31,d1t32,d1t33}}

pv={0,0,Fmn}

(**)

(*Define minor determinant for the 3-3 term in the LT matrix*)

coflt33=1t11*1t22-1t21*1tl12

(*Define derivative of dlt33 minor determinant*)

de=Expand [d1t11*1£22+d1t22*1t11-d1t21*1t12-d1t12*1t21]

dcoflt33=Simplify[dc]

(**)

(*Define derivative of the determinant LT*)

ddlt=dltll*(1t22*1t33-1t23*1t32)+d1t12*(1t23*1t31-1t33*1t21)+
Gltl3*(1t21*1t32-1t22*1t31)+dlt21* (1t13*1t32-1t12*1t33)+
Glt22* (1t11*1t33~1t13*1t31)+dle23*(1tl12*1t31-1t11*1t32)+
Ale31*(1t12*1£23-1t13*1t22)+dle32*(1t13*1t21-1t11*1¢t23)+
dlt33*(1t11*1t22-1t12*1t21)

ds=Expand [ddlt]

ddlt=Simplify{ds]

(**)

(* Initialize output variables

out=0.0

dout=0.0

pout=0.0

sout=0.0
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(**)

(* Open output file *)
OpenWrite["sens.out",PageWidth -> 164]

WriteString["sens.out", "TITLE=\"Displacement Sensitivity to Ply Angle\"\n"]
WriteString["sens.out", "VARIABLES=\"Freg\", \ "~ 6w/~ 6 'y\",\""6p/ 6 v\ ", \"w\",\"p\"\n"]
WriteString["sens.out", "ZONE T=\"Analytic Sensitivity\”\n"]

(**)

(* Determine D[Cmn,psi] - add mode shapes *)
Dol

Dol

lam= (m*pi*a/l);

dlt=Det [LT];

(* Compute displacement *)

Crmn=Frn*coflt33/4d1lt;

out=out+Cmn*w;

(**)

(* Compute acoustic pressure *)

upper=Crmn*rhof*om;

Dmn=upper/lower;

pout=pout+Dmn*p;

(* Compute displacement sensitivity to lamination angle *)
first=Simplifyl[dcoflt33*dlt];

second=Simplify[coflt33*ddlt];

bottom=Simplify[dlt*dlt];

dout=dout+ (pi/180) *Fmn* (first-second) /bottom;
sout=sout+(pi/180.0)* ( (rhof*om)/lower) *p*Fmn* (first-second) /bottom
,{m,1,15,2}1,{n,0,20,2}]

(**)

om=f*f*4*pi*pi

Plot[Log{10,Abs{out]], {£,110,140},AxesLabel -> {"Freq", "Log Displacement®}]
Plot[Log[10,Abs[dout]], {f,110,140},AxesLabel -> {"Freqg","Log Disp Sens"}]
Plot[20*Log[10,Abs[pout/pref]],{£,110,140},AxesLabel ~> {"Freq","Press (dB)"}1]
Plot[{Log[1l0,Abs{sout]], {£,110,140},AxesLabel -> {"Freqg","Log Press Sens"}]*)
Dof

dummy=20.0*Log[10,Abs [pout/pref]];

gg=ToExpression["f"];

rr=ToExpression["Abs[out]"];

gr=ToExpression["dout"};

pp=ToExpression["dunmy"];

pg=ToExpression["sout"];

Write["sens.out",qq,

OutputForm(" "],qr,

OutputForm(" "},pq,

OutputForm([* "},rr,

OutputForm[" "],ppl,

{£,20,50,1}]

Close["sens.out"]

D.3: MSC/NASTRAN Bulk Data File

What follows is a portion of the MSC/NASTRAN bulk data file which was used for

the optimization of the Starship fuselage in the present work. Shown is the formulation

of the design variables, property relations, objective function and constraints for the

problem. Not included in this listing is the finite element data for the model.

The design variables of the problem were normalized such that they varied between

1.0 and 2.0 with a starting point of 1.6. The design variables were related to the lamination

angles of the composite through the DVPRELI entries in the bulk data deck. The
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objective function was defined using a DRESP2 card (number 100). The sound pressure
levels at ten nodes in the fluid portion of the model were used as design constraints for
the problem. For additional information regarding the bulk data cards referenced in this

listing, the reader is referred to the literature [22, 37]

$ NASTRAN input file created by the PDA MSC/NASTRAN input file

$ translator ( PAT3/MSC-NASTRAN Release 1.4-2 ) on June 14, 1996 at
$ 15:11:49.
SASSIGN OUTPUT2 = ‘starship3.opt.op2’, UNIT = 12, FORM = FORMATTED

$ Frequency Response Analysis, Direct Formulation, Database
$NASTRAN SYSTEM(146)=1,SYSTEM(196)=1

INIT SCRATCH LOGI=(SCRATCH(400000))

SOL 200

TIME 6000

SEALL = ALL

SUPER = ALL

$ Optimization case control

ANALYSIS = MFREQ

DESOBJ 100

DESSUB = 500000

TITLE = MSC/NASTRAN job created on 04-Apr-96 at 11:18:01

ECHO = NONE

MAXLINES = 999999999

SET 777=12656,12645,13611,13728,14483,14455,15352,15454,16404,16410

SUBCASE 1

$ Subcase name : complete_loading
SUBTITLE=complete_loading
METHOD (structure) = 123
METHOD (£1uid) = 213
FREQUENCY = 1
LOADSET = 1
DLOAD = 2
DISPLACEMENT (SORT1, PUNCH, REAL) =777

$  VELOCITY (SORT1, PUNCH,REAL)=777

BEGIN BULK

PARAM POST -1

PARAM PATVER 3.

PARAM AUTOSPC YES

PARAM PRGPST NO

PARAM COUPMASS 1

PARAM K6ROT 0.

PARAM WTMASS 1.

PARAM, NOCOMPS, -1

PARAM G 0.06

PARAM OPTEXIT 7

INCLUDE ‘tet4.INC’

EIGRL 123 500 0
EIGRL 213 200 0
FREQL 1 185. 1. 25

$ Elements and Element Properties for region : main-cabin

$ Composite Property Record created from P3/PATRAN composite material
S record : MATRL.16

$ Composite Material Description : Created by neutral file import

PCOMP 7 -.4135 .06 + MU
+ MU 6 .0085 45. YES 10 .01 90. YES + MV
+ MV 10 .01 0. YES 10 .01 90. YES + MW
+ MW 5 .75 0. YES 10 .01 90. YES + MX
+ MX 10 .01 0. YES 10 .01 90. YES + MY
+ MY 6 .0085 45. YES

$ Optimization parameters
$ Define design variables (lamination angles, p-naught)

DESVAR 1 anglel 1.6 1.0 2.0 0.30
DESVAR 2 angle2 1.6 1.0 2.0 0.30
DESVAR 3 angle3 1.6 1.0 2.0 0.30
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DESVAR 4 angled 1.6 1.0 2.0 0.30

DESVAR 5 angle5 1.6 1.0 2.0 0.30

DESVAR 6 angle6 1.6 1.0 2.0 0.30

DESVAR 7 angle7 1.6 1.0 2.0 0.30

DESVAR 8 angle8 1.6 1.0 2.0 0.30

DESVAR 9 Po 100.0 40.0 150.0 0.15

$ Relate design varibles to property values for main cabin region

DVPREL]l 1 PCOMP 7 14 -225.0 + Z2Z2ZZA
+ ZZZZZA 1 180.0

DVPRELl 2 PCOMP 7 18 -180.0 + Z2ZZZB
+ ZZZZZB 2 180.0

DVPREL1 3 PCOMP 7 24 -90.0 -270.0 + ZZZZZC
+ ZZZZZC 3 180.0

DVPREL1 4 PCOMP 7 28 -180.0 + ZZ2ZZD
+ 2ZZ2ZD 4 180.0

DVPREL1l 5 PCOMP 7 38 -180.0 + ZZZZZE
+ Z2ZZZE 5 180.0

DVPREL1 6 PCOMP 7 44 -90.0 -270.0 + Z2ZZZF
+ ZZZZZF 6 180.0

DVPREL1 7 PCOMP 7 48 -180.0 + 22272ZG
+ Z2222G 7 180.0

DVPREL1 8 PCOMP 7 54 -225.0 + ZZZZZH
+ ZZZZZH 8 180.0

$ Relate design varibles to property values for main cabin doubler region
DVPREL1 11 PCOMP 4 14 -225.0 + ZAZZZA
+ ZAZZZA 1 180.0

DVPREL1l 12 PCOMP 4 18 -180.0 + ZAZZZB
+ ZAZZZB 2 180.0

DVPREL1 13 PCOMP 4 24 -90.0 -270.0 + ZAZZZC
+ ZAZ2ZC 3 180.0

DVPREL1 14 PCOMP 4 28 ~180.0 + ZAZZZD
+ ZAZZZD 4 180.0

DVPREL1 15 PCOMP 4 48 ~180.0 + ZAZZZE
+ ZAZZZE 5 180.0

DVPREL1 16 PCOMP 4 54 -90.0 -270.0 + ZAZZZF
+ ZAZZZF 6 180.0

DVPREL1 17 PCOMP 4 58 -180.0 + ZAZZZG
+ ZAZZZG 7 180.0

DVPREL1 18 PCOMP 4 64 -225.0 + ZAZZZH
+ ZAZZZH 8 180.0

$ Define objective function (minimize Po)

DRESP2 100 Po 999 + 222221
+ ZZZZZI DESVAR 9

DEQATN 999 obj (Po) =Po

DEQATN 400000 £(Po,x,y)=10.0*LOGLO( (x*x+y*y)/(8.41e~18))/Po
$ Define system response locations
$ First window, port and starboard side

DRESP1 100000 AAAAAA FRDISP 1 12656

DRESP1 150000 IAAAAA FRDISP 7 12656

DRESP2 200000 BAAAAA 400000 + AAAAAA
+ AAAAAA DESVAR 9 + BAAAAA
+ BAAAAA DRESP1 100000 150000

DRESP1 100001 AAAAAB FRDISP 1 12645

DRESP1 150001 TIAAAAB FRDISP 7 12645

DRESP2 200001 BAAAAB 400000 + AAAAAB
+ AAAAAB DESVAR 9 + BAAAAB

+ BAAAAB DRESP1 100001 150001
$ Second window, port and starboard side

DRESP1 100002 AAAAAC FRDISP 1 13611

DRESP1 150002 TIAAAAC FRDISP 7 13611

DRESP2 200002 BAAAAC 400000 + AAAAAC
+ AAAAAC DESVAR 9 + BAAAAC
+ BAAAAC DRESP1 100002 150002

DRESP1 100003 AAAAAD FRDISP 1 13738

DRESP1 150003 TIAAAAD FRDISP 7 13728

DRESP2 200003 BAAAAD 400000 + AAAAAD
+ AAAMAAD DESVAR 9 + BAAAAD

+ BAAAAD DRESP1 100003 150003

$ Third window, port and starboard side

DRESP1 100004 AAAAAF FRDISP 1 14483
DRESP1 150004 IAAAAE FRDISP 7 14483

82



DRESP2 200004 BAAAAE 400000 + AAAAAE

+ AAAMAE DESVAR 9 + BAAAAE
+ BAAAAE DRESP1 100004 150004

DRESP1 100005 AAAAAF FRDISP 1 14455

DRESPL 150005 TIAAAAF FRDISP 7 14455

DRESP2 200005 BAAAAF 400000 + AAAAAF
+ AAAAAF DESVAR 9 + BAAAAF

+ BAAAAF DRESP1 100005 150005
$ Fourth window, port and starboard side

DRESP1 100006 AAAAAG FRDISP 1 15352

DRESP1 150006 IAAAAG FRDISP 7 15352

DRESP2 200006 BARAAG 400000 + AAAAAG
+ AAABAG DESVAR 9 + BAAAAG
+ BAAAAG DRESP1 100006 150006

DRESP1 100007 AAAAAH FRDISP 1 15454

DRESP1 150007 IAAAAH FRDISP 7 15454

DRESP2 200007 BAAAAH 400000 + AAAAAH
+ AAAAAH DESVAR 9 + BAAAAH

+ BAAAAH DRESP1 100007 150007
$ Fifth window, port and starboard side

DRESP1 100008 AARAAI FRDISP 1 16404

DRESP1 150008 IAAAAT FRDISP 7 16404

DRESP2 200008 BAAAAT 400000 + AAAAAT
+ AAARAAI DESVAR 9 + BAAAAT
+ BAAAAT DRESP1 100008 150008

DRESP1 100009 AAAAAJ FRDISP 1 16410

DRESP1 150009 IAAAAJ FRDISP 7 16410

DRESP2 200009 BAAAAJ 400000 + AAAAAJ
+ AAAAAJ DESVAR 9 + BAARAAJ
+ BAAAAJ DRESP1 100009 150009

$ Define constraint cards on DRESP2 entries

DCONSTR 1 200000 1.0

DCONSTR 2 200001 1.0

DCONSTR 3 200002 1.0

DCONSTR 4 200003 1.0

DCONSTR 5 200004 1.0

DCONSTR 6 200005 1.0

DCONSTR 7 200006 1.0

DCONSTR 8 200007 1.0

DCONSTR 9 200008 1.0

DCONSTR 10 200009 1.0

DCONADD 500000 1 2 3 4 5 6 7 + ZZZZZZ
+ 22722727 8 9 10

DSCREEN EQUA -0.2

DOPTFPRM DESMAX 11 Pl 1 P2 15 + 22ZZZY

+ ZZZ72ZY DXMIN 0.075 DPMIN 0.10
INCLUDE ‘structure.dat’
INCLUDE ‘fluid.dat’
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